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ABSTRACT 

Screening of pooled urine specimen was suggested during the Second World War as a 

method for reducing the cost of detecting syphilis in U.S. soldiers. Recently, pooling has been 

used in epidemiological studies for screening of human immunodeficiency virus HIV/AIDS 

antibody to help curb the spread of the virus. Pooling reduces the cost but also – and more 

importantly – offers a feasible way to lower the misclassifications associated with labeling 

specimens when imperfect tests are used. Furthermore, misclassifications can be reduced by 

employing a re-testing design in a pool testing procedure. In this design a large sample from a 

population of interest is pooled into n pools each of size k and each pool is subjected to a 

single test. For pools that test negative further testing are discontinued but those that test 

positive are given a re-test. Pools that test positive on re-testing, their constituent members 

are tested individually so as to classify them as either defectives or non-defectives. This study 

has developed a computational statistical model for classifying a large sample from a 

population of interest based on the re-testing design described above. This model permits 

calculation of cost of testing and the number of misclassifications made in this design. 

Simulated data from a multinomial distribution (specifically a trinomial distribution) has been 

used to illustrate the computation of cost and the number of misclassifications in the re-

testing design. This study has also considered pool testing procedure without re-testing when 

imperfect tests are used. In this procedure, a sample from the population of interest is pooled 

into n pools of size k and each pool subjected to a single test. Pools that test negative further 

testing are discontinued whereas those that test positive their constituent members are tested 

individually. Simulation from a binomial distribution has been carried out and statistical 

moments based on this distribution have been computed to illustrate this testing design. The 

cost of this testing design and the number of misclassifications made has also been computed. 

Comparison of the two pool testing designs on the basis of cost and misclassifications has 

been carried out for the purpose of generalization and improvement. From this study, it has 

been established that re-testing reduces misclassifications significantly and more so, it is 

stable at high rates of probability of incidences as compared to Dorfman procedure. However, 

re-testing comes with a cost i.e. increase in the number of tests. Re-testing considered reduces 

the sensitivity of the testing scheme but at the same time it improves the specificity; making 

the model viable in blood donation. 
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CHAPTER ONE 

INTRODUCTION 

 1.0 Summary 

 In this chapter we provide a foundation to our study i.e. the background information 

and thus leading to the formulation of the problem. The entire chapter is arranged as follows: 

Section 1.1 provides background information to the present study, the statement of the 

problem is presented in Section 1.2 while the objectives and the justification of the study are 

presented in Sections 1.3 and 1.4 respectively. Operational definitions and assumptions of 

this study are presented in Section 1.5 and 1.6 respectively. 

1.1 Background Information 

 The idea of group testing originated with Dorfman (1943) during World War II as an 

economical method of testing blood specimens of army inductees in order to detect the 

presence of infection. Group testing has been applied in many areas as outlined by Sobel and 

Groll (1966). It has also been used to screen the population for the presence of HIV/Aids 

antibody (Kline, 1989). Dorfman (1943) proposed that, rather than testing each blood 

specimen individually, portions of each of k specimens can be pooled and the pooled 

specimen tested first. If the pooled specimen is free of infection, all k inductees are passed 

with no further tests, otherwise the remaining portions of each of the blood specimens are to 

be tested individually. If the prevalence of infection is low, the expected number of tests per 

inductee, and thus the expected cost per inductee, would be reduced. Dorfman (1943) 

assumed that tests were perfect i.e. a negative reading indicates the group contains no 

defective item and a positive reading indicates the presence of at least one defective item. 

Dorfman (1943) did not consider group testing when imperfect tests were used. In real life 

problem the tests are imperfect (i.e. sensitivity and specificity are less than 100%). This 

procedure is described diagrammatically in Figure 1.1 as suggested by Dorfman (1943).                                                                                                

Pools 

 

                                                                                             

 

 

 

Figure 1.1: Dorfman (1943) pool testing strategy 
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 Based on Dorfman (1943) idea, Monzon et al. (1992) proposed another design for 

screening the population for the presence of HIV/AIDs antibody. In this design the 

population is pooled into n pools and each pool is subjected to a single test. Pools that test 

negative further testing are discontinued but those that test positive are given a re-test. Pools 

that test positive on re-testing, their constituent members are tested individually for the 

presence of HIV/AIDs antibody. This procedure is illustrated diagrammatically in Figure 1.2. 

Pools 

 

 

 

 

 

 

 

Figure 1.2: Monzon et al., (1992) pool testing strategy 

According to the available literature, no statistical model has been developed based on 

Monzon et al. (1992) design of pool testing, in particular the computational aspect unlike the 

Dorfman (1943) design which has received a lot of attention. This study develops a 

computational statistical model based on Monzon et al. (1992) design of pool testing. The 

rest of the thesis is organized as follows; literature review of the present study is discussed in 

Chapter Two and methods used are presented in Chapter Three. Group testing strategies i.e 

with and without re-testing and their discussions are provided in Chapter Four. Conclusions 

and recommendations for open problems are presented in Chapter Five.  

1.2 Statement of the Problem 

 Classification of a large sample from a population of interest into defectives and non-

defectives can be a tedious and an expensive exercise. This classification can also lead to 

increased error rates especially when the sample is large and the prevalence rate is high. Pool 

testing not only reduces cost but also and more importantly offers a feasible way to lower the 

misclassifications associated with labeling specimens when imperfect tests are used. 

Furthermore, misclassifications can be reduced by re-testing in the pool testing procedure. 

The computation of cost of testing and the number of misclassifications at various assumed 

1 2 i n 
, , … … … … … … … … , ,  … … … … … … … , 
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values of prevalence rate require a statistical model. A statistical model based on Dorfman 

procedure of pool testing with the assumption that the test kits are perfect has been 

developed. In most real cases the test kits are imperfect (i.e. sensitivity and specificity are less 

than 100%). Based on the Dorfman procedure, a group testing with re-testing design has been 

proposed. According to the literature available, no computational statistical model has been 

developed based on this design. Therefore, it is not feasible to determine whether this design 

reduces the testing cost and/or the number of misclassifications or not. The purpose of this 

study is to develop a computational statistical model based on the group testing with re-

testing design and compare this design with the Dorfman procedure when imperfect test kits 

are used.  

1.3 Objectives  

1.3.1 General Objective 

To develop a computational statistical model based on Monzon et al. (1992) design of pool 

testing strategy. 

1.3.2 Specific Objectives    

1 To derive the probability of declaring a pool and a specimen positive/negative before 

and after re-testing. 

2 To carry out simulations from binomial and multinomial distributions based on 

Dorfman (1943) and Monzon et al. (1992) designs of pool testing respectively. 

3   To compute the number of misclassifications and the cost of testing. 

4   To compare the proposed design with the Dorfman (1943) design. 

5  To develop MATLAB codes for computing various statistical measures in the testing 

designs.   

1.4 Justification 

 Consider a large sample of size N from a population of interest, where N tends to 

infinity. The idea here is to classify the sample N into two distinct groups, defectives and 

non-defectives. At the same time, resources are limited to carry out this exercise. Notice that 

if imperfect tests are applied, one at a time testing can result into fatigue and misclassification 

as N   and the resources required will be massive. In this situation, pool testing comes in 

handy specifically the retesting as this will reduce the misclassification errors. 
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1.5 Definition of Terms 

(i)  Pool/Group 

      A set of individuals pooled or grouped together for the purpose of testing. 

(ii) Sensitivity 

      This is the probability of correctly classifying a defective group or individual. 

(iii) Specificity 

       This is the probability of correctly classifying a non-defective group or individual. 

(iv) Group Test 

This is a test performed on a group of more than one item in which a negative reading 

indicates the group contains no defective items and a positive reading indicates the 

presence of at least one defective item. 

(v)  Re-testing 

      This refers to testing of a group or individual more than once. 

1.6 Assumptions 

In the entire study the following assumptions have been made; 

i) The tests act independent of one another and are not destructive, 

ii) Individuals in a group/pool are independent of each other, 

iii) Individuals' specimens do not react with each other. 
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CHAPTER TWO 

LITERATURE REVIEW 

 2.0 Summary 

 This chapter discusses survey literature of group/pool testing procedure. It further 

provides the procedure that will be used in the present study such as random number 

generation which is the backbone of this study. A group/pool test is a test performed on a 

group of more than one item in which a negative reading indicates the group contains no 

defective items and a positive reading indicates the presence of at least one defective. The 

basic idea is to put specimens from individuals for example urine, sera, plasma to form a 

group and then test the group rather than testing each individual for evidence of a disease. 

The objectives of group testing are two-fold: classification of the units of a population as 

either defective or non-defective as presented in Section 2.1 and estimation of the prevalence 

of a disease in a population presented in Section 2.2. The applications of the testing 

procedure are presented in Section 2.3. Section 2.4 discusses random number generation. 

2.1 Classification of the Units of a Population 

 A simple procedure was proposed by Dorfman (1943) for classifying members of an 

population of interest of size N into defective and non-defective items. The idea was to put 

the population into groups each of size k and perform tests on each group. Dorfman (1943) 

has given the group size k, depending on the known prevalence rate, which maximizes the 

expected number of items classified per test. The main benefit of group testing is that it 

reduces the expense and effort incurred compared to individual testing. Dorfman (1943) 

showed that if the prevalence rate of a disease is small then group testing can lead to 

worthwhile saving i.e., reduce the number of tests by about 80%. Dorfman (1943), assumed 

that if p is the prevalence rate then, 

 1 p           = the probability of selecting at random an individual free  

  from infection, 

  1
k

p
      

     = the probability of obtaining by random selection a group of size k  

     individuals all of whom are free from infection, 

  1 1
k

p p   
  
= the probability of obtaining by random selection a group of k    

   individuals that contains at least one individual infected, 

 N
k

          = the number of groups of size k constructed from a population of size N, 
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 p N
k

     = the expected number of infected groups of size k in a population of       

   size N with a prevalence rate of p. 

The above formulation will be vital in our derivation in subsequent work. Dorfman (1943), 

showed that the expected number of tests denoted by ( )E T  obtained by grouping procedure 

is, 

   N NE T k p
k k

                  (2.1) 

that is,  the number of groups plus the number of individuals in groups which require 

individual testing and hence if the prevalence rate is small, then group testing can lead to 

worthwhile saving since ( )E T N .   

 Hwang (1975) defined a Dorfman procedure as a partition of units into any number of 

disjoint groups such that a group test is performed on each of them. Hwang (1975) considered 

group testing when a population consists of k stochastically independent units where unit i 

has a probability pi of being defective which is called a generalized binomial group test 

(GBGT) problem. When pi=p for all units then the generalized binomial group test problem 

reduces to a binary group testing problem considered under Dorfman's procedure. Hwang 

(1975) was able to give an efficient dynamic programming algorithm for obtaining an 

optimal Dorfman procedure for the generalized binomial problem with finite k. An optimal 

group testing procedure in this case implies a procedure which minimizes the expected 

number of tests. There is an upper bound on the size of a group test which if incorporated into 

the Dorfman procedure can in effect reduce the amount of computation (Hwang, 1975). 

Similarly, Hwang (1976) studied group testing model with the presence of a dilution effect 

i.e. a group containing a few defective items may possibly be misidentified as a group 

containing no such items, especially when the size of the group is large. When such a 

misidentification occurs losses are incurred. Hwang (1976) assumed that the dilution effect 

has a special form, which includes the classical model with no dilution effects as a special 

case. Hwang (1976) calculated the expected cost of mis-identification for each group of size k 

under the Dorfman procedure and determined the optimal group size k which minimizes this 

cost. Hwang (1976) assumed that dilution effect is the only cause of misidentification and by 

letting  D k  be the probability that a defective group of size k is identified correctly by the 

test, clearly  1 1D   since there is no dilution and for k being large  D k  should approach p. 

A class of functions satisfying these two limit conditions is of the form, 
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 
1

dk

p
D k

q



 , 0 1d                                   (2.2) 

where d is called a dilution parameter. 

When d=0 then  D k =1 which is the classical group testing with no dilution and when d=1, 

 D k  can be interpreted as the probability of randomly selecting a unit from a defective 

group. Further, Hwang (1976) proposed that in most real situation q is usually close to one  

and as such for  k  not too large 1
dkq  is usually approximated by dk p  and  D k  by k

-d
. 

The cost of misidentifying a defective group of size k was derived as being proportional to 

the expected number of defective items in the group, i.e. the cost equals 
 1 k

ckp

q
 where c 

is a constant depending on the cost of a test which is taken as a unit cost. By letting N be the 

population size, the expected cost when the group size is k was proposed as 

   

2

( ) ( cos )

1 1 1 1
11 1

1 (1 )

1 1

d d

d d

k k

kk k

k

k k

N
E k Expected t for group of size k

k

N p p ckp
q q

k qq q

q p cp
N cp

k q q

 

   
             

  
    

   

                        (2.3) 

for given  , ,c p d , the group size  1k k N   which minimizes the E(k) in Equation (2.3) 

can be easily found as 

   1 1 .d dE k N k k p cp ck p       
                         

(2.4) 

By treating  E K  as a continuous function of k and taking first derivatives, we have 

 
  2 2 11 1 .d d

E k
Nk d k p cdk p

k

  


    
                                    

(2.5) 

Upon defining 

    2 11 1 d df k d k p cdk p     
                          

(2.6) 

then  f k  is a monotone increasing in k and hence it has at most one solution at   0f k   

given by 

 1 1 0.d p cdp    
                          

  (2.7) 

 In recent years, there has been renewed interest in group testing strategies of 

biological specimens because of the application in HIV/AIDs epidemiology (Kline et al., 
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1989). Johnson et al. (1992) studied the cost effectiveness of pooling algorithm for the 

objective of identifying individuals with the trait. In their procedure, each individual group 

that tested positive was divided into two equal groups, which were tested; groups that tested 

positive were further subdivided and tested and so on. Litvak et al. (1994) extended this work 

by considering pooling algorithms when there are errors and showed that some of these 

algorithms can reduce the error rates of the screening procedures (the false positives and false 

negatives) compared to individual testing. Nyongesa (2004) considered hierarchical pooling 

studies which involve testing pools and then sequentially subdividing and testing the positive 

pools. Nyongesa (2005) also considered group testing with re-testing i.e. re-testing of both 

pools classified as positive and negative. Indeed it was observed that re-testing improves the 

sensitivity and specificity of the group-testing algorithm. Maheswaran et al. (2008) computed 

statistical measures in their proposed testing strategy. This was the first work of 

computational statistics in group testing literature. Nyongesa and Syaywa (2011) generalized 

and extended Maheswaran testing scheme to imperfect testing model and then computed 

statistical measures. Nyongesa and Syaywa (2010) have developed a computational group-

testing strategy with test errors based on Kline et al. (1989) design. From their computed 

results, they showed that when the group size is small, the efficiency of the test kits are high 

and the prevalence rate is low, then group testing is cost effective. Further, they showed that 

misclassifications are prominent when the efficiency of the test kits are low and incidence 

probability high, calling for re-testing. Nyongesa and Syaywa (2010) derived the composite 

probability of classifying a group as positive denoted by   and gave it as 

(1 (1 ) ) (1 ) (1 ).k kp p                                   (2.8) 

where,  is the sensitivity of the test and   is the specificity of the test. Statistical moments 

were computed via simulation from binomial distribution based on the above equation. 

Tamba et el. (2011) have considered a computational pool testing strategy when imperfect 

tests are used based on Dorfman (1943) design. Statistical measures on the number of tests 

and misclassifications have been computed. From their work, it has been shown that pool 

testing is only economical when the prevalence rate is low. 

2.2 Estimation of the Prevalence Rate using Pool Testing 

 Sobel and Elashoff (1975) considered group testing with a new goal of estimating the 

probability p of an arbitrary unit being defective. Sobel and Elashoff (1975) observed that a 

certain class of nested halving procedures is highly efficient and the saving over the one at a 
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time procedures is even greater for the estimation problem than for the previously treated 

group testing problems of classifying a given finite set.  

 Nyongesa (2011) considered estimating the prevalence rate based on a pool-testing 

scheme with re-testing and showed that when imperfect tests are used in pool testing strategy, 

there tend to be loss of sensitivity. The loss in sensitivity can be recovered by re-testing the 

pools classified initially. Apart from improving the sensitivity of the testing scheme, it also 

improves the efficiency of the estimator. In this procedure, pools classified as negative are 

retested and the likelihood estimator for the prevalence of the disease derived basing on this 

scheme. If sensitivity and specificity of the testing scheme are assumed constant, retesting 

can improve the sensitivity of the testing scheme too. The estimators of prevalence p before 

and after retesting respectively were given as follows; 

 
1

1

1

ˆ
ˆ 1

1

kp
p

 

 

 
   

                              

(2.9) 

where   1
1

ˆ
x

p
n

   and 1x  are the number of pools that test positive before re-testing and 

 and   are the specificity and sensitivity of the tests respectively. Also a second moment 

estimator was proposed as 

   

   

1

2

2

ˆ1
ˆ 1

1 1

kp
p

  

   

   
   

                             

(2.10) 

 where     2
2

ˆ
x

p
n

   and 2x  are the number of pools that test positive after re-testing. 

Clearly the second estimator of p is consistent only if the sensitivity and specificity are not 

equal. 

 The maximum likelihood estimator (MLE) of the proportion of infected units in a 

population using pools is upwardly biased estimator of the population proportion. Hepworth 

and Watson (2008) investigated this bias of the MLE when testing groups of different sizes 

using fixed and sequential procedures and observed that the possibility of obtaining all 

positive groups contributes substantially to the bias and by using analytical method i.e. the 

simple iterative technique, Hepworth and Watson (2008) were able to correct the bias for 

fixed procedures satisfactorily but for the sequential procedures with their uneven bias pattern 

a numerical method which produces an almost unbiased estimator was proposed. The 

maximum likelihood estimator of the prevalence rate is given as follows. Suppose that, for 



                                                              

 

 

10 

1,2,...,i m ; in  groups of size ik  are tested, and ix  of the groups test positive. The 

likelihood function, denoted as L (p|x) is given by 

        
 

1

/ 1 1 1
i

i i i ii

i

m x
k k n xn

x

i

L p x p p




   
                                 

(2.11) 

The p̂ that maximizes Log L (p|x) is obtained by solving  

 1 1

.
1 1

i

m m
i i

i i k
i i

k x
k n

p 


 

 
                                               

(2.12) 

For a constant group of size k, this equation simplifies to  
1

ˆ 1 1
kxp

n
    and the bias of p̂  

is given by,    ˆBias p E p p   which shows that the estimator is biased since, 

  0Bias p 
 
(Hepworth and Watson, 2008). 

2.3 Applications of Group Testing 

 Group testing has been applied in many areas as outlined by Sobel and Groll 

(1966).The first application of group-testing was to the problem of pooling blood specimens 

in order to classify each one of a large group of people (e.g. soldiers in an Army unit) as to 

whether or not they have a particular disease (e.g., syphilis). An interesting feature about the 

applications of group-testing is the variety of different fields in which they appear. Mundel 

(1984) has shown that group testing can be applied in many industries for example, in making 

a "leak test" on a large number of gas-filled (say, with helium) electrical devices, one can test 

any number of units in a single test and the result of test on x  units is that either all x  are 

good or at least 1 of the x   is defective. 

 Group testing has been applied is in testing various electrical devices such as 

condensers, resistors, etc. The main idea can best be explained with the familiar Christmas 

tree background. If one assumes that the x  bulbs for the tree are all in series so that when he 

switches on the lights (or plug into the wall socket) he will know by the result that either all 

the x  bulbs are good or at least one of the x  is defective but he does not know as a result of 

this test alone how many or which ones are defective. Suppose he had shorter wires (of 

various sizes) for fewer bulbs he can use these to find out exactly which ones are defective. 

 Group testing has been applied in screening the population for the presence of HIV 

antibody (Kline et al., 1989 and Manzon et al., 1992). Litvak et al., (1994), applied group 

testing in screening HIV antibody to help curb the further spread of the virus. Litvak et al. 

(1994) showed that pooling offers a feasible way to lower the error rates associated with 
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labeling specimens when screening low risk HIV population. For instance, given the limited 

precision of the available test kits, it has been shown that screening pooled sera can be used 

to reduce the probability that a specimen labeled negative in fact has antibodies since each 

test has a certain sensitivity and specificity. 

2.4 Random Number Generators 

 Our statistical development will be based on random numbers. The theory of 

generating random numbers is illustrated below (L’Ecuyer, 2004). Random number 

generators used for simulation are almost always based on deterministic algorithms. A 

random number generator is a structure (S, μ, f, U, g) where S is a finite set of states (the state 

space), μ is a probability distribution on S used to select the initial state (or seed) s0, f : S   

S is the transition function, U is the output space, and g : S   U is the output function. If one 

assumes that U = (0, 1), the state of the random number evolves according to the recurrence si 

= f (si−1), for i ≥ 1, and the output at step i is ui = g(si) ∈ U. The output values u0, u1, u2, . . . 

are the so called random numbers produced by the random number generator. Because the 

state space S is finite, there are necessarily finite integers l ≥0 and j > 0 such that sl+j = sl. 

Then, for all i ≥ l, one has si+j = si and ui+j = ui, because both f and g are deterministic. This 

means that the state and output sequences are eventually periodic. The smallest positive j for 

which this happens is called the period length of the random number generator, and is 

denoted by ρ. When l = 0, the sequence is said to be purely periodic. Obviously, the period 

length ρ cannot exceed |S|, the cardinality of the state space. Good random number generators 

are designed so that their period length ρ is not far from the upper bound. For general 

recurrences, ρ may depend on the seed s0, but good random number generators are normally 

designed so that   ρ is the same for all admissible seeds. In practice, it is important that the 

output be strictly between 0 and 1, because the transformations that generate non-uniform 

variates sometimes take infinite values when U is 0 or 1.An extremely long period is 

essential, to make sure that no wrap-around over the cycle can occur. The length of the period 

must be guaranteed by a mathematical proof. The random number generator must also be 

efficient (run fast and use little memory), repeatable (able to reproduce exactly the same 

sequence as many times as one wants), and portable (work the same way in different 

software/hardware environments). It's also important that the random variables generated are 

independent and this is verified by the following hypothesis: 

H0: the ui are realizations of i.i.d. U (0, 1) random variables. 

Versus 
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H1: the ui are not realizations of i.i.d. U (0, 1) random variables. 

 There are several methods of generating random numbers but the most widely used is 

the multiple recursive generator based on the general linear recurrence, 

 1 1 ... modi i k i kx a x a x    m,                                   (2.13) 

where m and k are positive integers called the modulus and the order respectively, and the 

coefficients a1, . . . , ak are in m, interpreted as the set {0, . . . ,m − 1} on which all 

operations are performed with reduction modulo m. A multiple recursive generator (MRG) 

uses the above equation with a large value of m and defines the output as  

(0,1).i
i

x
u

m
 

                                     

(2.14) 

 Most methods for generating random variables start with random numbers that are 

uniformly distributed on the interval (0, 1) (Martinez and Martinez, 2002) .These random 

variables are denoted by the letter U. With the advent of computers, one can easily generate 

uniform random variable (Hunt et al., 2004) and then through the methods of inverse 

transform, acceptance-rejection method, random variables from other probability 

distributions can be generated (Martinez and Martinez, 2002).  
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CHAPTER THREE 

METHODS 

3.0 Summary 

 This chapter presents the methods used in the study. These include statistical 

packages for random number generation and probability theory. Discussion of statistical 

packages, specifically MATLAB is presented in section 3.1. The required probability theory 

for the present study i.e. indicator functions is presented in section 3.2. 

3.1 Statistical Packages and Generation of Random Numbers 

 This is a statistical computational study that encompasses generation of random 

numbers. Several computer packages can be used to generate random numbers. In this study 

we have used MATLAB codes to generate these random numbers and statistical measures. 

Most methods for generating random variables start with random numbers that are uniformly 

distributed on the interval (0, 1). These random variables are denoted by the letter U. With 

the advent of computers, uniform random variables are easily generated. However the 

numbers generated by computers are really pseudorandom because they are generated using a 

deterministic algorithm. The basic MATLAB program has a function rand for generating 

uniform random variables. The function rand with no arguments returns a single instance of 

the random variable U. To get an m n  array of uniform variates, we have used the syntax 

rand (m,n). The sequence of random numbers that is generated in MATLAB depends on the 

seed or the state of the generator. The state is reset to the default when it starts up, so that the 

same sequences of random variables are generated whenever we start MATLAB. From the 

uniformly distributed random numbers, we have simulated from the binomial and trinomial 

distribution using the inverse transform procedure and/or using direct methods.  

 The inverse transform procedure illustrated below has been used to generate binomial 

random variables. When generating random variables from a binomial distribution with 

parameters n and p, this represents the number of successes in n independent trials. To obtain 

a binomial random variable we have generated n uniform random numbers and by letting X 

be the number of those that are less than or equal to p. This was easily implemented and the 

output looped in a row of N columns using MATLAB Code as illustrated in the following 

algorithm: 
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X = zeros (1,N); 

U = rand (N,n); 

for i = 1:N 

ind = find(U(i,:) <= p); 

X (i) = length (ind); 

end 

 Similarly, we simulated directly from binomial distribution with parameters n and p, N runs 

directly using MATLAB and this is the easiest procedure as the function is an inbuilt and is 

given by X= binornd (n,p,1,N). 

 Simulation of multinomial random variables (e.g. trinomial random variables) with 

parameters n and p, N times directly has been obtained by defining a vector of probabilities p 

and then generating random variables X (which are vectors) by the inbuilt function  X= 

mnrnd (n,p,N).  

3.2 Probability Theory 

 The probability theory was used to develop the probability distribution based on 

Monzon et al. (1992) design of pool testing. The following indicator functions were 

cornerstone to our development: 

Define 

1;

0;

th

i

if the i group tests positive on the test
T

otherwise


 


' 1;

0;

th

i

if the i group tests positive on the re test
T

otherwise

 
 
  

1;

0;

th

i

if the i group is positive
D

otherwise


 


 

1;

0;

th th

ij

if the j individual in the i group tests positive on the test
T

otherwise


 


 

1;

0;

th th

ij

if the j individual in the i group is positive
D

otherwise


 


 

 Using the above indicator functions we derived the probability of declaring a group/an 

individual positive or negative before and after re-testing. These probabilities were used in 

generating random variables as illustrated above and hence used in developing the statistical 



                                                              

 

 

15 

model based on Monzon et al. (1992) design. Also, the indicator functions were used in 

obtaining the cost of the testing scheme.  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS  

4.0 Summary 

 Consider a large sample of size N from a population of interest pooled into n pools 

each of size k. The n constructed pools are subjected to testing. The testing can be carried 

with or without re-testing. In this chapter two testing strategies; group testing with and 

without re-testing have been considered. Section 4.1 presents group testing without retesting 

when imperfect tests are used whereas group testing with re-testing is presented in Section 

4.2. Section 4.3 presents the comparison of the two testing designs.   

4.1 Group Testing Without Retesting  

 In this design, a large sample of size N from a population of interest pooled into n 

pools each of size k. The n pools formed are subjected to testing. If the test result on a given 

pool is negative, further tests on the pool are discontinued implying that the pool is negative 

whereas a positive result indicates the presences of at least one defective member then the 

constituent members of the pool are tested individually. In this design a single testing is 

sufficient to classify a group or an individual as positive or negative. At the same time we 

shall assume that the tests applied have sensitivity and specificity values less than 100% thus 

allowing errors in the design.  

4.1.1 Derivation of Probabilities 

Suppose we have a set of N   individuals to be investigated for some trait and that are 

to be classified as defectives or non-defectives. Further let    be a    field on N  and 1X  

and 2X  are random variables defined on N , i.e. 1 :X N  and 2 :X N   such that for 

any Borel set,   we have  1

1X   
  

and  1

2X    .
  

Now subdivide N into n  

partitions in this case representing pools each of size k . We perform a test on each pool as 

discussed above. For simplicity let 1X  be the number of pools that test positive and 2X  be 

the number of pools that test negative on testing and hence 2 1X n X  .  Let p be the 

probability measure on   such that an individual is positive (prevalence rate), then1 p , the 

probability that an individual is negative also defined on . Our interest in this study is to 

consider the testing problem when imperfect tests are used. We derive a new set function  

( , , , )p k    on , the probability of classifying a pool as positive by the test is 

( , , , ) ( 1)ip k Pr T    
                           

(4.1) 
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where   and  are the sensitivity and specificity of the test respectively. Upon utilizing the 

law of total probability we have 

   ( , , , ) ( 1, 1 0)i i ip k Pr T D or D        

  

( 1, 1) Pr( 1, 0)

( 1| 1) Pr( 1) Pr( 1| 0) Pr( 0)

(1 (1 ) ) (1 )(1 ) .

i i i i

i i i i i i

k k

Pr T D T D

Pr T D D T D D

p p 

     

       

     

          (4.2) 

It is clear that  0,1p  and so, 1 (.)     which implies that (.)  is a continuous 

function bounded above by   and below by 1  . Also notice that in situation where the 

pool size is one then Equation (4.2) becomes 

( , , , ) (1 )(1 ).p k p p                                  (4.3) 

Equation (4.3) can be used in the formulation of individual testing when imperfect tests are 

employed. Notice that group testing is feasible when the prevalence rate is small. In such 

situation Equation (4.2) becomes 

(.) ( 1) (1 ) ( ).kp O p                                   (4.4) 

The probabilities in Equations (4.2), (4.3) and (4.4) will be utilized in the subsequent 

development. 

4.1.2 Expected Number of Tests 

 In this section we are interested in the construction of an equation for computing the 

number of test in this design.  If we let Z denote the number of tests in this group testing 

scheme, then clearly: 

11Z n kX                                                                                      (4.5) 

where, n is the number of pools, k  is the pool size, 1X  is the number of groups that test 

positive and 1 is the control factor.   

Clearly, the expected number of tests is  

   11

1 (.).

E Z n kE X

n kn

  

  
                                                            (4.6) 

Using Equation (4.4), (4.6) can be written as 

  21 ( 1) (1 ) ( ).E Z n k np kn O p                                                 (4.7) 

Similarly the variance of the number of tests is obtained as 

 

1

2

1

2

( ) (1 )

( )

(.) 1 (.) .

Var Z Var n kX

k Var X

k n 

  



 

                                                              (4.8) 
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Next, we consider the derivation of skewness and kurtosis. Firstly, we consider the derivation 

of skewness. By definition, skewness denoted by 1  is given by 

3
1 3

2
2






                                                                                  (4.9) 

where   is the respective central moment, therefore 

  

  
  

  
  
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1 3
2 2

33

1 1

3
23 2

1 1

3

1 1

3

2
1

( )

( )

.

( )

E Z E Z

E Z E Z

k E X E X

k E X E X

E X E X

Var X
















                                                                        (4.10) 

But since 1X  is a binomial random variables with parameters n and (.) , the third and second 

moments can easily be obtained and Equation (4.10) becomes  

  

  

  

1 3

2

1

2

(.) 1 (.) 1 2 (.)

(.) 1 (.)

1 2 (.)
.

(.) 1 (.)

n

n

n

  


 



 

 









                                                                     (4.11) 

Secondly, the kurtosis denoted by 2  is given by 

4
2 2

2





                                                                                               
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                                               (4.12) 
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Similarly using the fourth and second central moments of a binomial distribution Equation 

(4.12) becomes 

    
  

 
  

2

2 2

2

(.) 1 (.) 3 (.) (2 ) 3 (.)( 2) 1

(.) 1 (.)

6 (.) 6 (.) 1
3.

(.) 1 (.)

n n n

n

n

   


 

 

 

    




 
 



                               (4.13) 

These formulations will be useful in the generation of various statistical measures which is 

the discussion in the next sub-section. 

4.1.3 Generation of Moments 

 If 1X  denotes the number of positive pools then 1 ( , (.))X binomial n  . Hence 

various statistical measures; mean, standard deviation, kurtosis and skewness are computed 

by the help of MATLAB Code (1) as outlined in the Appendix. The total number of tests, 

cost and relative savings are also computed. The above Equations (4.2) and (4.3) helps us to 

generate moments presented in the Tables 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 where   is the 

mean,   is the standard deviation, 1  is the skewness and 2 is the kurtosis. Simulations 

from a sample size of 100 with the group size 10 when the sensitivity and specificity of the 

test is 99%, the following observations are made based on Table 4.1: 

a) The number of defectives increase with increase in the incidence probability p, 

b) The number of  tests increase with increase in incidence probability p, 

c) Relative savings decrease with increase in incidence probability p. 

If the sample size is increased to 500 or 1000 from 100 with group size 20 as presented in 

Table 4.2 and 4.3 respectively similar observations are noted. Furthermore, when the group 

size is maintained but the sample size is increased more defective are realized but there is no 

significant difference in relative savings as seen in the case of N =1000, k=20 and 

99%    and N =500, k=20 and 99%   . Similar observations are made when 

sensitivity and specificity of the test is varied to 95% as depicted in Table 4.4, 4.5 and 4.6. 

These observations are true in practice since group testing is only economical when the 

incidence probability is small (Dorfman, 1943) otherwise individual testing is preferred i.e. 

relative savings decrease with increase in prevalence rate. Thus the tables provide empirical 

evidence of group testing scheme. 
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Table 4.1:  Various characteristics for group testing strategy with 1000 runs, N =100, k=10, 99   % 

Characteristics 

 

p=0.01 p=0.05 p=0.1 

     
1  2       

1  2       
1  2  

Number of defectives 1.916 1.339 0.609 3.077 5.940 2.318 0.328 2.889 10.787 3.097 0.284 2.905 

Number of defective groups 1.041 0.964 0.772 3.377 3.970 1.463 0.140 2.978 6.323 1.563 -0.1200 2.935 

Number of group tests 11.000 - - - 11.000 - - - 11.000 - - - 

Number of individual tests 10.400 9.640 0.772 3.377 39.700 14.626 0.140 2.978 63.230 15.630 -0.1200 2.935 

Total number of tests 21.400 9.640 0.772 3.377 50.700 14.626 0.140 2.978 74.230 15.630 -0.1200 2.935 

Total testing cost 21.400 9.640 0.772 3.377 50.700 14.626 0.140 2.978 74.230 15.630 -0.1200 2.935 

Percentage savings 78.600 9.640 0.772 3.377 49.300 14.626 0.140 2.978 25.770 15.630 -0.1200 2.935 

 

 

Table 4.2:  Various characteristics for group testing strategy with 1000 runs, N =500, k=20, 99   % 

Characteristics 

 

p=0.01 p=0.05 p=0.1 

    
1  2      

1  2      
1  2  

Number of defectives 10.019 3.130 0.354 2.964 29.455 5.361 0.249 3.100 54.003 6.988 0.174 2.841 

Number of defective groups 4.584 1.895 0.238 2.903 16.071 2.403 -0.056 2.900 21.791 1.647 -0.442 2.977 

Number of group tests 26.000 - - - 26.000 - - - 26.000 - - - 

Number of individual tests 91.680 37.91 0.238 2.903 321.42 48.058 -0.056 2.900 435.82 32.930 -0.442 2.977 

Total number of tests 117.68 37.91 0.238 2.903 347.42 48.058 -0.056 2.900 461.82 32.930 -0.442 2.977 

Total testing cost 23.536 7.582 0.238 2.903 69.484 9.6116 -0.056 2.900 92.364 6.5866 -0.442 2.977 

Percentage  savings 76.464 7.582 0.238 2.903 30.516 9.6116 -0.056 2.900 7.636 6.5866 -0.442 2.977 
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Table 4.3:  Various characteristics group testing strategy with 1000 runs, N =1000, k=20, 99   % 

Characteristics 

 

p=0.01 p=0.05 p=0.1 

    
1  2      

1  2      
1  2  

Number of defectives 19.789 4.433 0.141 3.028 59.072 7.481 0.101 2.889 108.10 9.696 0.053 3.233 

Number of defective groups 9.462 2.791 0.225 2.817 31.977 3.423 -0.071 2.820 43.592 2.418 -0.306 2.913 

Number of group tests 51.000 - - - 51.000 - - - 51.000 - - - 

Number of individual tests 189.24 55.82 0.225 2.817 639.54 64.458 -0.071 2.820 871.84 48.354 -0.306 2.913 

Total number of tests 240.24 55.82 0.225 2.817 639.54 64.458 -0.071 2.820 922.84 48.354 -0.306 2.913 

Total testing cost 24.024 5.582 0.225 3.011 63.954 6.4458 -0.071 2.820 92.284 4.8354 -0.306 2.913 

Percentage savings 75.976 5.582 0.225 3.011 30.946 6.4458 -0.071 2.820 7.716 4.8354 -0.306 2.913 

 

Table 4.4:  Various characteristics for group testing strategy with 1000 runs, N =100, k=10, 95   % 

Characteristics 

 

p=0.01 p=0.05 p=0.1 

    
1  2      

1  2      
1  2  

Number of defectives 5.966 2.409 0.455 3.279 9.485 2.903 0.233 2.908 13.866 3.478 0.290 3.014 

Number of defective groups 1.402 1.105 0.743 3.531 4.119 1.543 -0.001 3.007 6.378 1.548 -0.310 2.871 

Number of group tests 11.000 - - - 11.000 - - - 11.000 - - - 

Number of individual tests 14.020 11.05 0.743 3.531 41.190 15.425 -0.001 3.007 63.780 15.484 -0.310 2.871 

Total number of tests 25.020 11.05 0.743 3.531 52.190 15.425 -0.001 3.007 74.780 15.214 -0.078 2.832 

Total testing cost 25.020 11.05 0.743 3.531 52.190 15.425 -0.001 3.007 74.780 15.214 -0.078 2.832 

Percentage savings 74.980 11.05 0.743 3.531 47.810 15.425 -0.001 3.007 25.220 15.214 -0.078 2.832 
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Table 4.5:  Various characteristics for group testing strategy with 1000 runs, N =500, k=20, 95   % 

Characteristics 

 

p=0.01 p=0.05 p=0.1 

    
1  2      

1  2      
1  2  

Number of defectives 29.693 5.209 0.212 3.023 47.178 6.523 0.109 3.022 69.648 7.909 0.082 2.927 

Number of defective groups 5.397 2.122 0.363 3.127 15.640 2.463 -0.104 2.723 20.940 1.871 -0.572 3.367 

Number of group tests 26.000 - - - 26.000 - - - 26.000 - - - 

Number of individual tests 107.94 42.44 0.363 3.127 312.80 49.360 -0.104 2.723 418.80 37.420 -0.572 3.367 

Total number of tests 133.94 42.44 0.363 3.127 338.80 49.360 -0.104 2.723 444.80 37.420 -0.572 3.367 

Total testing cost 26.788 8.488 0.363 3.127 67.760 9.872 -0.104 2.723 88.960 7.4840 -0.572 3.367 

Percentage savings 73.212 8.488 0.363 3.127 32.240 9.872 -0.104 2.723 11.040 7.4840 -0.572 3.367 

 

 

Table 4.6:  Various characteristics for group testing strategy with 1000 runs, N =1000, k=20, 95   % 

Characteristics 

 

p=0.01 p=0.05 p=0.1 

    
1  2      

1  2      
1  2  

Number of defectives 58.881 7.655 0.143 2.835 95.216 9.511 0.258 3.092 140.26 10.601 -0.005 3.184 

Number of defective groups 10.783 2.900 0.151 2.862 31.348 3.553 -0.091 2.877 42.045 2.404 -0.238 2.919 

Number of group tests 51.000 - - - 51.000 - - - 51.000 - - - 

Number of individual tests 215.66 58.01 0.151 2.862 626.96 71.054 -0.091 2.877 840.90 48.078 -0.238 2.919 

Total number of tests 266.66 58.01 0.151 2.862 677.96 71.054 -0.091 2.877 891.90 4.8078 -0.238 2.919 

Total testing cost 26.666 5.801 0.151 2.862 67.796 7.1054 -0.091 2.877 89.190 4.8078 -0.238 2.919 

Percentage  savings 73.434 5.801 0.151 2.862 32.204 7.1054 -0.091 2.877 10.810 4.8078 -0.238 2.919 
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4.1.4 Misclassifications in the Testing Scheme 

  In this sub-section we discuss misclassification that can arise in the experiment, there 

are two possible cases of misclassifications that may arise in the testing strategy under 

discussion namely: 

a) A defective item is classified as non-defective ( this is called false negative) 

b) A non-defective item is classified as defective (this is called false positive). 

We begin by deriving our probabilities of interest that is, false positive and false negative. 

First, we derive the probability of correctly classifying a defective individual herein referred 

to as sensitivity of the testing procedure. 

Pr( 1, 1| 1)

Pr( 1, 1, 1 0 | 1)

Pr( 1, 1, 1| 1) Pr( 1, 1, 0,| 1)

Pr( 1, 1, 1| 1) 0

Pr( 1, 1, 1, 1)

Pr( 1)

Pr( 1| 1) Pr(

i ij ij

i ij i i ij
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
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

                  (4.14) 

The complement of Equation (4.14) gives the probability of false positive 

21 .sef  
                                                 

(4.15) 

The probability of false negative is computed by first calculating the specificity of the testing 

procedure as 

Pr( 1, 0 | 0) Pr( 0 | 0)i ij ij i ijSpecificity T T D T D       .          (4.16) 

Let us first consider Pr( 0 | 0)i ijT D  , 
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Pr( 0 | 0) Pr( 0, 1 0 | 0)
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(4.17) 

Secondly, consider Pr( 1, 0 | 0)i ij ijT T D  
 
that is
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(4.18) 

Combining Equations (4.17) and (4.18) we obtain the specificity as provided by Equation 

(4.16) 

 1 1

Pr( 1, 0 | 0) Pr( 0 | 0)

( (1 ))(1 (1 ) ) (1 ) (1 ) .

i ij ij i ij

k k

Specificity T T D T D

p p     

      

        
         (4.19) 

 The probability of false negative is then easily obtained from Equation (4.19) as 

1 .spf Specificity 
                         

(4.20) 

Utilizing Equations (4.15) and (4.20) we compute the misclassifications in this design of pool 

testing. Computed values of moments of false positives sample sizes 100, 500 and 1000 with 

group sizes 10 and 20 respectively have been presented in Tables 4.7a and 4.7b when test 

with specificity and sensitivity of 99% and 95% are employed respectively. It can be seen 

from these tables that: 

 a) The number of false positives increases with the increase in incident probability, 
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 b) The false positives realized increase when the sample size is large. In fact when    

      the sample size is doubled false positives almost double, 

 c) When sensitivity and specificity is increased there is a decrease in false positives; 

     calling for the usage of more accurate test kits. 

Simulation of false negatives at sensitivity and specificity of 99% and 95% are presented in 

Tables 4.8a and 4.8b below. We observe that: 

a) The number of false negatives increases with the increase in incidence probability 

though at a slow rate, 

b) Approximately the number of false negatives double when the sample size is 

doubled, 

c) A decrease in sensitivity and specificity leads to an increase in false negatives. 
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Table 4.7a: Number of false positives in the group testing strategy for different group sizes 99   % 

Probability, 

p 

N =100, k=10 N =500, k=20 N =1000, k=20 

    
1  2      

1  2      
1  2  

0.01 0.0389 0.1954 4.9148 23.1331 0.1993 0.4420 2.1725 4.5199 0.3950 0.6222 1.5432 2.2807 

0.02 0.0585 0.2394 4.0105 15.4037 0.2942 0.5370 1.7881 3.0620 0.5914 0.7613 1.2612 1.5234 

0.03 0.0775 0.2755 3.4851 11.6320 0.3902 0.6184 1.5527 2.3088 0.7881 0.8789 1.0925 1 .1431 

0.04 0.0961 0.3069 3.1291 9.3769 0.4900 0.6930 1.3856 1.8386 0.9735 0.9768 0.9830 0.9254 

0.05 0.1173 0.3390 2.8323 7.6823 0.5896 0.7601 1.2632 1.5281 1.1737 1.0725 0.8953 0.7676 

0.1 0.2168 0.4610 2.0830 4.1553 1.0744 1.0261 0.9357 0.8385 2.1540 1.4530 0.6609 0.4183 

0.15 0.3127 0.5536 1.7345 2.8813 1.5578 1.2356 0.7771 0.5783 3.1303 1.7516 0.5482 0.2878 

 

Table 4.7b: Number of false positives in the group testing strategy for different group sizes 95   % 

Probabilit

y, p 

N =100, k=10 N =500, k=20 N =1000, k=20 

    
1  2      

1  2      
1  2  

0.01 0.5682 0.7161 1.1241 0.9205 2.8930 1.6158 0.4982 0.1808 5.7572 2.2794 0.3532 0.0908 

0.02 0.6524 0.7673 1.0491 0.8017 3.3266 1.7327 0.4646 0.1572 6.6303 2.4462 0.3291 0.0789 

0.03 0.7430 0.8188 0.9831 0.7040 3.7336 1.8356  0.4385 0.1401 7.5250 2.6060 0.3089 0.0695 

0.04 0.8424 0.8719 0.9232 0.6209 4.1999 1.9469 0.4135 0.1245 8.3590 2.7466 0.2931 0.0626 

0.05 0.9277 0.9150 0.8798 0.5638 4.6289 2.0439 0.3939 0.1130 9.2329 2.8866 0.2789 0.0566 

0.1 1.3733 1.1133 0.7231 0.3809 6.8563 2.4875 0.3236 0.0763 13.6130 3.5051 0.2297 0.0384 

0.15 1.8065 1.2769 0.6305 0.2895 9.0225 2.8536 0.2821 0.0580 18.0418 4.0352 0.1995 0.0290 
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Table 4.8a: Number of false negatives in the group testing strategy for different group sizes 99   % 

Probability, 

p 

N =100, k=10 N =500, k=20 N =1000, k=20 

    
1  2      

1  2      
1  2  

0.01 0.0928 0.3045 3.2780 10.7151 0.8838 0.9392 1.0608 1.1213 1.7678 1.3284 0.7501 0.5606 

0.02 0.1679 0.4094 2.4340 5.9036 1.5650 1.2487 0.7957 0.6290 3.1287 1.7660 0.5626 0.3145 

0.03 0.2354 0.4846 2.0534 4.1958 2.1158 1.4514 0.6829 0.4622 4.2325 2.0528 0.4829 0.2311 

0.04 0.2958 0.5430 1.8301 3.3282 2.5610 1.5960 0.6198 0.3800 5.1221 2.2571 0.4383 0.1900 

0.05 0.3504 0.5909 1.6798 2.8005 2.9177 1.7028 0.5800 0.3321 5.8381 2.4087 0.4100 0.1660 

0.1 0.5455 0.7363 1.3416 1.7774 3.8231 1.9469 0.5048 0.2504 7.6465 2.7533 0.3570 0.1252 

0.15 0.6425 0.7985 1.2333 1.4972 3.9886 1.9877 0.4936 0.2389 7.9714 2.8100 0.3491 0.1195 

 

Table 4.8b: Number of false negatives in the group testing strategy for different group sizes 95   % 

Probability, 

p 

N =100, k=10 N =500, k=20 N =1000, k=20 

    
1  2      

1  2      
1  2  

0.01 0.6017 0.7732 1.2767 1.6088 4.8588 2.1929 0.4466 0.1952 9.7125 3.1004 0.3159 0.0977 

0.02 0.9309 0.9600 1.0209 1.0208 7.8496 2.7780 0.3478 0.1167 15.7059 3.9295 0.2459 0.0583 

0.03 1.2272 1.1004 0.8846 0.7609 10.2818 3.1706 0.3013 0.0865 20.5545 4.4829 0.2131 0.0433 

0.04 1.4908 1.2110 0.7988 0.6162 12.2372 3.4510 0.2742 0.0708 24.4703 4.8801 0.1939 0.0354 

0.05 1.7305 1.3028 0.7382 0.5228 13.8070 3.6586 0.2566 0.0614 27.6135 5.1740 0.1815 0.0307 

0.1 2.5850 1.5834 0.5936 0.3291 17.7867 4.1292 0.2221 0.0447 35.6137 5.8428 0.1570 0.0223 

0.15 3.0215 1.7057 0.5428 0.2701 18.5126 4.2037 0.2163 0.0419 37.0504 5.9470 0.1529 0.0209 
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Indeed group testing is only feasible when the group size is relatively small. This is because 

when group sizes are large there is a possibility of a dilution effect which makes it impossible 

to identify defective items in a large group (Hwang, 1976). We have also observed that 

misclassifications are prominent when the efficiency of the test kits is low and incidence 

probability high; calling for re-testing and this is the subject of the next section. 

4.2 Group Testing With Re-testing 

 In this section we consider a testing strategy in which the sample is pooled into n 

pools and each pool is subjected to a single test. Pools that test negative further testing is 

discontinued but those that test positive are given a re-test as presented in Figure 1.2 (cf 

Monzon et al., 1992). Pools that test positive on re-testing, their constituent members are 

tested individually for the presence of characteristic of interest. This design herein referred to 

as group testing with re-testing.  

4.2.1 The Probabilities 

 Let N be a universal set and     be a    field on N . Let 1X , 2X , 11X and 12X  be 

random variables defined on N , i.e. 1X , 2X , 11X and 12X  are functions that take every sample 

point (outcome) on to the real line. Now subdivide N into n  partitions in this case 

representing pools each of size k . We perform a test on each pool as discussed above. 

Basically, let 1X  be the number of pools that test positive on the initial test, 2X  be the 

number of pools that test negative on the initial test, 12X  be the number of pools that test 

negative on re-testing and 11X  be the number of pools that test positive on retesting, 

hence 11 2 12  X n X X   . The discussion is summarized in Figure 1.2. Let p be the 

probability measure on   such that an individual is positive (prevalence rate), then1 p , is a 

set function on , the probability that an individual tests negative. We derive new set 

functions 1  and 2    on , the probabilities of classifying a pool as negative before and after 

re-testing respectively. 

Probability of declaring a pool negative on the initial test  

1 Pr( 0)

Pr( 0, 0 1)

Pr( 0, 0) Pr( 0, 1)

Pr( 0 | 0) Pr( 0) Pr( 0 | 1) Pr( 1)
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i i i i i i
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   
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 (4.21) 
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Clearly  0,1p  and so 1 1      which implies that 1  is a continuous function 

bounded below by  and above by1  . Notice also that when the probability p is small then 

Equation (4.21) can be approximated as 

1 ( 1) ( ).kp O p       
                          

(4.22)  

 Secondly, the probability of declaring a pool as negative on re-testing pools classified 

positive is 

'

2

'

' '

' '
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(4.23)

 

Similarly 2  is bounded below by (1 )   and above by (1 )   i.e. 

2(1 ) (1 )        and for small values of p  Equation (4.23) can be approximated by 

 2 (1 ) (1 ) (1 ) ( )kp O p            
                      

(4.24) 

and the probability of a pool being classified positive on re-testing of positive pools is 

3 2 11                                (4.25) 

or this probability of declaring a pool positive on re-testing of initially declared positive pools 

can be derived directly as '

3 Pr( 1, 1)i iT T    and by the law of total probability we have, 

'
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          (4.26) 

The probabilities 
1 2, 3, and    will enable us to compute the joint probability distribution of 

2X , 11X and 12X . Therefore, from the above argument the joint probability density function 

for 2X , 12X and 11X  is a multinomial probability density  

  2 122 12

2 12 11 2 12 11 2 12 11 1 2 1 2   ( , , ) 1 .
n

n x xx x

X X Xf x x x x x x    
  

   
                 

(4.27) 

In this retesting strategy, we consider 2 as the measure which filters out negative pools from 

the pools that were initially classified as positive in the initial test. The covariance matrix of 

the random variables 2X , 11X and 12X is computed as follows 
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1 1 1 2 1 3

2 12 11 1 2 2 2 2 3

1 3 2 3 3 3

(1 )

ov( , , ) (1 ) .

(1 )

n n n

C X X X n n n

n n n
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     
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   
 

    
              

(4.28) 

Equation (4.27) can be used to estimate the prevalence in the re-testing strategy and for 

further discussion on this subject see Nyongesa (2011).        

4.2.2 Expected Number of Tests in Retesting Scheme 

  In this sub-section we consider the number of tests in the proposed re-testing scheme. 

If we define rZ  to be the number of tests in this testing strategy then  

1 111 .rZ n X kX                      (4.29)                               

We obtain the expected number of tests and variance of the number of tests by conditioning 

 11X  on 1X  i.e, 

     
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1 11

1 11 1

1

1 |

rE Z n E X kE X

n E X kE E X X

   

   
                                                    (4.30) 

where 1 ( , (.))X binomial n   and 3
11 1,

(.)
X binomial X





 
 
 

. 

Using Equation (4.2), the expected number of tests becomes 

      
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                   (4.31) 

The variance of rZ  is computed as 
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2 .

( ) 2 ( ) ( )

r r rVar Z E Z E Z

E X E X kX kE X
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Var X kCov X X k Var X

 

   

      

  

    (4.32) 

Using Equations (4.3) and (4.26), 

2

1 1 11 11( ) ( ) 2 ( ) ( )rVar Z Var X kCov X X k Var X    
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(4.33) 

Next, we consider the derivation of skewness and kurtosis of rZ . In general, using the theory 

of moment generating function of a multinomial distribution the central moments of 1X  

and 11X  can be obtained easily as shown below.  
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                                                                                     (4.34) 

Similarly the central moments for 11X  are given by 
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                                                   (4.35) 
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Equations (4.34) and (4.35) will aid in the derivation of skewness and kurtosis of rZ . Firstly, 

we consider the derivation of skewness. By definition, skewness denoted by 
1r
  is given  
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                        (4.36) 

Evaluating the numerator of Equation (4.36) we have, 
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                   (4.37) 

Considering the second and third part of Equation (4.37) the following derivations are made;  
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and,
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Equation (4.37) now becomes 
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                              (4.40) 

Hence the skewness is given by 
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Now we consider the kurtosis denoted by 
2r
  which is given by 
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Expanding the numerator we have, 
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                   (4.43) 

Now we consider the second, third and fourth parts of Equation (4.43) individually in 

Equations (4.44), (4.45) and (4.46) respectively: 
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The fourth part of Equation (4.43) becomes 
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Hence the kurtosis of rZ  is given by 

2r

a

b
                                                       (4.47) 

where,  
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These constructions will be useful in the next sub-section. 

4.2.3 Generation of Moments in the Group Testing with Retesting Scheme 

 Suppose in this testing strategy that in the initial test we had 2X  pools that test 

negative, 12X  pools that test negative on the re-test, and 11X  pools test positive on the re-test, 

then the number of these positive pools  on retesting are  

11 2 12   .X n X X  
                                     

(4.48) 

We are in a position to generate statistical moments based on this design. Using Equations 

(4.21), (4.23) and (4.25) we generated the moments as presented in Tables 4.9, 4.10 and 4.11 

using MATLAB Code (2) as outlined in the Appendix. From the simulation from a sample of 

size of 100 with group size 10 with 99%    the following observations are made; 

a) The number of non-defectives in the initial test decrease with an increase in 

probability of incidence p  

b) The number of non-defectives in the re-test is almost invariant with p 

c) The number of the defectives in the re-test increased with the increase in probability 

of incidence p  

Similar observations are made when the sample size is increased to 500 or 1000 with group 

size of 20 as depicted in Table 4.10 and 4.11. Changing the values of sensitivity and 

specificity so that 95%   , similar observations are made as shown is Tables 4.12, 4.13 

and 4.14. 
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Table 4.9: Various characteristics for group testing with re-testing strategy with N=100, k=10, 99   % 

Probability, p Non-defective on the initial test Non-defective on the retest Defective on the retest 

    
1  2      

1  2      
1  2  

0.01 98.0920     1.4050     -.6476     3.0172     0.9500     0.9894     1.1378     3.5644     0.9580 1.0074 0.9558 3.4618 

0.02 97.0290     1.7897     -.6307     2.9127     0.9900     1.0182     1.1911     3.2100     1.9810 1.4095 0.5262 3.1625 

0.03 96.0800     1.8382     -.4558     3.0429     0.9780     0.9494     1.0860     4.1275     2.9420 1.6311 0.4484 3.0615 

0.04 95.0740     2.1485     -.3735     3.3075     0.9970     1.0238     1.0195     3.2108     3.9290 1.9196 0.4097 3.4980 

0.05 94.1830     2.3339     -.3541     3.0893     0.9890     1.0280     0.9434     4.9873     4.8280 2.1113 0.4211 3.1513 

0.1 89.1630     3.2133     -.3081     3.0934     0.9710     0.9263    0.9727     3.9033     9.8660 3.1019 0.2829 2.9122 

0.15 84.2970     3.7271     -.3474     3.0317     0.9890    0.9792     0.9860     3.4233     14.7140 3.6295 0.3911 2.9507 

Table 4.10: Various characteristics for group testing with re-testing strategy with N =500, k=20, 99   % 

Probability, p Non-defective on the initial test Non-defective on the retest Defective on the retest 

    
1  2      

1  2      
1  2  

0.01 490.140  3.1361 -.3652 3.216 4.9580  2.1692 0.5752  3.1354 4.9020 2.2471 0.6017 3.3866 

0.02 485.162  3.8850     -.0997     3.181      5.0930     2.2357     0.4270     2.8934     9.7450 3.1485 0.2345 3.3954 

0.03 480.081    4.4258     -.2196     2.612  5.0230    2.2293     0.5108     3.1608     14.8960 3.8797 0.3102 2.9530 

0.04 475.440    4.6273     -.0995     3.094     4.9300    2.1919     0.4151     2.8761     19.6300 4.2786 0.2234 3.1743 

0.05 470.587   5.0444 -.2584 2.928 4.9320 2.2470 0.4819 3.2585 24.4810 4.5832 0.2202 3.0332 

0.1 446.009  6.9683     -.1684     2.920     4.9540    2.2507     0.2901     3.1056      49.0370 6.8149 0.2044 2.7506 

0.15 421.582 8.2124   -.0749   2.671  4.9620  2.1031   0.3049   3.1946  73.4560 7.9670 0.0855 2.7040 
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Table 4.11: Various characteristics for group testing with re-testing strategy with N =1000, k=20, 99   % 

Probability, 

p 

Non-defective on the initial test Non-defective on the retest Defective on the retest 

    
1  2      

1  2      
1  2  

0.01 980.3240     4.4759     -.3669     3.005  9.8430     3.2105     0.4813     2.9751     99.8330 3.1139 0.3662 3.3487 

0.02 970.5690     5.3726     -.0938     2.882       9.8750    3.1753     0.2591     3.0031     19.5560 4.2701 0.1761 2.9036 

0.03 960.7880     5.8934     -.2732     2.910    9.9020    3.0429     0.4374 3.1523     29.3100 5.1009 0.1921 2.6657 

0.04 950.6610    6.7939     -.1119     2.883    10.0150    3.1800     0.2997     3.0618     39.3240 5.9656 0.1615 2.9583 

0.05 941.2780    7.4532     -.1036     2.927    10.0860    3.2186     0.3937     2.7049     48.6360 6.8435 0.1086 2.9533 

0.1 892.0800     9.5502     0.0167     3.155    9.9200    3.0812     0.1579    3.0927     98.0000 9.1889 -0.0245 3.1685 

0.15 842.8170     11.283   0.0979     2.798    9.8890   3.0021    0.3908    3.2034     147.2940 10.9185 -0.0178 2.8292 

Table 4.12: Various characteristics for group testing with re-testing strategy with N =100, k=10, 95   % 

Probability, 

p 

Non-defective on the initial test Non-defective on the retest Defective on the retest 

    
1  2      

1  2      
1  2  

0.01 94.2330     2.3077     -.3863     3.221    4.6860     2.0963     0.3360     3.2701     1.0810 1.0135 0.8639 3.7005 

0.02 93.2880     2.5032     -.3802     3.454 4.7030     2.0538     0.4316     3.4180    2.0090 1.3538 1.0718 3.7737 

0.03 92.3040     2.6365     -.3831     3.122 4.7540     2.1505     0.3693     3.2535     2.9420 1.6480 0.5682 3.1631 

0.04 91.4250     2.7476     -.3807     2.833    4.6770     2.0942     0.4644     3.0740     3.8980 1.9067 0.5020 3.0915 

0.05 90.5200     3.0546     -.2827     3.137    4.6610     2.2214     0.4218     3.4230     4.8190 2.1677 0.4114 3.3761 

0.1 85.9730     3.3674     -.2494     3.134   4.6980     2.0458     0.5056     3.2429     9.3290 2.8658 0.3102 3.1975 

0.15 81.6960     3.9026     -.1019     3.093 4.6560    2.2099     0.4902     2.9593     13.6480 3.3720 0.2093 3.1250 
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Table 4.13: Various characteristics for group testing with re-testing strategy with N=500, k=20, 95   % 

Probability, 

p 

Non-defective on the initial test Non-defective on the retest Defective on the retest 

    
1  2      

1  2      
1  2  

0.01 470.7790    5.2465     -.2005     2.9425     23.4360     4.6969     0.1401     3.0450     5.7850 2.3582 0.4716 3.4082 

0.02 465.9130    5.5867     -.1960     2.8804     23.8930    4.8225     0.2235     2.7954     10.1940 3.0358 0.3896 3.2360 

0.03 461.0360    5.9309     -.1288     2.6152     24.1130    4.7641     0.1345     2.8208     14.8510 3.7877 0.2435 2.8729 

0.04 456.9010    6.1450 -.1321     2.8201     23.8690    4.7349 0.2304     2.8707     19.2300 4.1496 0.2780 2.9681 

0.05 452.5610    6.4723     -.1686     3.0232     23.7180    4.7970     0.1268     3.0059     23.7210 4.6795 0.1539 2.8216 

0.1 429.7840    7.9616     -.0604     2.8649     23.6830    4.7532     0.1311     3.6184     46.5330 6.7088 0.1274 2.8081 

0.15 407.4830    8.6475     0.0104     2.8548     23.6030    4.7146     0.0907     2.8383     68.9140 7.6282 0.0756 3.2026 

 Table 4.14: Various characteristics for group testing with re-testing strategy with N =1000, k=20, 95   % 

Probability, 

p 

Non-defective on the initial test Non-defective on the retest Defective on the retest 

    
1  2      

1  2      
1  2  

0.01 940.9280    7.3725     -.217 2.7449     47.4310    6.6779     0.2362     2.7420     11.6410 3.3565 0.2282 3.0047 

0.02 931.7290    7.8555     -.120     2.7668     47.9150    6.7480     0.1461     2.8489     20.3560 4.6726 0.1786 2.9884 

0.03 922.8680    8.5454     -.123     2.9140     47.7370    6.9302     0.2068     2.7053     29.3950 5.3106 0.1431 2.9788 

0.04 913.8860    8.6825     .2473     3.1127     47.7640    6.7042     0.2652     3.0113     38.3500 5.7446 0.2634 3.0295 

0.05 904.5560    9.3002     -.135     2.7574     47.9230    6.7043     0.1431     2.8241     47.5210 6.7752 0.1864 2.9703 

0.1 860.2880    11.1389     -.121     2.9902     47.1150    6.9920     0.0892    2.9037     92.5970 9.2797  -0.0115 2.8705 

0.15 815.2060    12.7498     -.146 2.9033     47.2830   6.8600    0.2130     2.8820     137.511 11.351 0.2134 3.0113 
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Re-testing the groups that were initially declared positive filters out the negative groups that 

were misclassified hence reducing the misclassification errors. To compute relative savings in 

this strategy, we require the total number of tests of which is a function of the defective 

groups. When we compute our relative savings in our proposed testing strategy 

when 99%   , the following observations are made as shown in Tables 4.15, 4.16, and 

4.17:  

a) The number of defective groups and number of tests increase with increase in 

probability of  incidence p, 

b) Relative savings reduce with increase in p, 

c) Relative savings increase with increase in group size when the probability of 

incidence is small. 

Similar observations are made when sensitivity and specificity values are changed to 

95%    as presented in Tables 4.18, 4.19 and 4.20. 
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Table 4.15:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =100, 

k=10, 99   % 

Characteristics 

 

P=0.01 P=0.05 P=0.1 

    
1  2      

1  2      
1  2  

Number of non- defectives 

group on the 1st test 

8.9470     1.0005     -0.888     3.3359    5.9710     1.4798     -0.205     2.8798    3.5710     1.5288     0.1718     2.7379    

Number of  non-defective 

groups on re-test 

0.0980     0.3250     0.9265 12.259    0.0900     0.3286     3.0334     12.051    0.1050     0.2986     3.7687    11.722    

Number of defective groups 

on the re- test 

0.9550 0.9428 0.9265 3.6347 3.9390 1.4696 0.2439 2.9038 6.3240 1.5490 -0.163 2.6714 

Number of group tests 11.026 - - - 14.029 - - - 16.429 - - - 

Total number of individual  

tests 

9.550 9.428 0.9265 3.6347 39.390 14.696 0.2439 2.9038 63.240 15.490 -0.163 2.6714 

Total number of  tests 21.576 9.428 0.9265 3.6347 54.419 14.696 0.2439 2.9038 80.669 15.490 -0.163 2.6714 

Total testing cost 21.576 9.428 0.9265 3.6347 54.419 14.696 0.2439 2.9038 80.669 15.490 -0.163 2.6714 

Percentage savings 78.424 9.428 0.9265 3.6347 45.581 14.696 0.2439 2.9038 19.331 15.490 -0.163 2.6714 
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Table 4.16:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =500, 

k=20, 99   % 

Characteristics 

 

P=0.01 P=0.05 P=0.1 

    
1  2      

1  2      
1  2  

Number of non- defectives 

group on the 1st test 

20.275 1.9973     -0.514 3.2247     9.0480     2.2746     0.1715     3.0086     3.1950     1.6644     0.4933     3.0536     

Number of  non-defective 

groups on re-test 

 0.241     0.5119     1.7600     7.3919     0.2340    0.4607     2.0780    7.7788     0.2460    0.4865     1.9591    5.5551     

Number of defective groups 

on the re- test 

4.4840 1.9387 0.5252 3.2351 15.718 2.2820 -.1354 2.8377 21.559 1.7219 -.4776 3.0860 

Number of group tests 29.725 - - - 40.952 - - - 46.805 - - - 

Total number of individual  

tests 

89.680 39.740 0.5252 3.2351 314.36 45.640 -.1354 2.8377 431.18 34.438 -.4776 3.0860 

Total number of  tests 120.41 39.740 0.5252 3.2351 356.31 45.640 -.1354 2.8377 478.99 34.438 -.4776 3.0860 

Total testing cost 24.082 7.9480 0.5252 3.2351 71.262 9.1280 -.1354 2.8377 95.798 6.8876 -.4776 3.0860 

Percentage savings 75.918 7.9480 0.5252 3.2351 28.738 9.1280 -.1354 2.8377 4.202 6.8876 -.4776 3.0860 
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Table 4.17:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =1000, 

k=20, 99   % 

Characteristics 

 

P=0.01 P=0.05 P=0.1 

    
1  2      

1  2      
1  2  

Number of non- defectives 

group on the 1st test 

40.598 2.6509     -.1907     3.1356     17.984     3.3586     0.0764     2.9143     6.3490     2.3364     0.2433     3.0104     

Number of  non-defective 

groups on re-test 

0.4630     0.6874     1.2219     4.1325     0.4990    0.6753     1.5906    4.1597     0.4590    0.6988     1.4910    6.6991     

Number of defective groups 

on the re- test 

8.9390 2.5826 0.2275 3.0620 31.517 3.3787 -.0505 2.9141 43.192 2.4222 -.2026 2.9678 

Number of group tests 59.402 - - - 82.016 - - - 93.651 - - - 

Total number of individual  

tests 

178.78 51.652 0.2275 3.0620 630.34 67.574 -.0505 2.9141 863.84 48.444 -.2026 2.9678 

Total number of  tests 239.18 51.652 0.2275 3.0620 713.36 67.574 -.0505 2.9141 958.49 48.444 -.2026 2.9678 

Total testing cost 23.918 5.1652 0.2275 3.0620 71.336 6.7574 -.0505 2.9141 95.849 4.8444 -.2026 2.9678 

Percentage savings 76.082 5.1652 0.2275 3.0620 28.664 6.7574 -.0505 2.9141 4.151 4.8444 -.2026 2.9678 
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Table 4.18:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =100, 

k=10, 95%    

Characteristics 

 

P=0.01 P=0.05 P=0.1 

    
1  2      

1  2      
1  2  

Number of non- defectives 

group on the 1st test 

8.6440     1.1700     -.5423     2.9606     5.8830     1.5252     0.0222     2.8162     3.6320     1.5477     0.1486     2.8169     

Number of  non-defective 

groups on re-test 

0.4970     0.6982     1.2849     4.5230     0.4490     0.6842     1.1915     4.1657     0.4260     0.6766     1.2065    4.8986     

Number of defective groups 

on the re- test 

0.8590 0.9300 0.8361 3.3976 3.6680 1.5228 0.0719 3.0232 5.9420 1.5957 -.1297 2.8060 

Number of group tests 11.356 - - - 14.117 - - - 16.368 - - - 

Total number of individual  

tests 

8.590 9.300 0.8361 3.3976 36.680 15.228 0.0719 3.0232 59.420 15.957 -.1297 2.8060 

Total number of  tests 20.946 9.300 0.8361 3.3976 51.797 15.228 0.0719 3.0232 76.788 15.957 -.1297 2.8060 

Total testing cost 20.946 9.300 0.8361 3.3976 51.797 15.228 0.0719 3.0232 76.788 15.957 -.1297 2.8060 

Percentage savings 79.054 9.300 0.8361 3.3976 48.203 15.228 0.0719 3.0232 23.212 15.957 -.1297 2.8060 
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Table 4.19:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =500, 

k=20, 95   % 

Characteristics 

 

P=0.01 P=0.05 P=0.1 

    
1  2      

1  2      
1  2  

Number of non- defectives 

group on the 1st test 

19.777 2.0304     -.1293     2.8915     9.3350     2.4371     0.0460     2.8004     4.0630     1.8311     0.3887     3.2041     

Number of  non-defective 

groups on re-test 

1.1230     1.0704     0.9512     2.8250     1.1620    1.0599     0.8855     3.0411     1.2420    1.0706     0.8703    3.3969     

Number of defective groups 

on the re- test 

4.1000 1.8146 0.3253 2.9687 14.503 2.5441 0.0251 2.8278 19.695 1.9869 -.3472 3.1641 

Number of group tests 30.223 - - - 40.665 - - - 45.937 - - - 

Total number of individual  

tests 

82.000 36.292 0.3253 2.9687 290.06 50.882 0.0251 2.8278 393.90 39.738 -.3472 3.1641 

Total number of  tests 113.22 36.292 0.3253 2.9687 331.73 50.882 0.0251 2.8278 440.84 39.738 -.3472 3.1641 

Total testing cost 22.645 7.2584 0.3253 2.9687 66.345 10.176 0.0251 2.8278 88.167 7.9476 -.3472 3.1641 

Percentage savings 77.355 7.2584 0.3253 2.9687 33.655 10.176 0.0251 2.8278 11.833 7.9476 -.3472 3.1641 
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Table 4.20:  Various characteristics along with relative savings for group testing with retesting strategy with 1000 runs for N =1000, 

k=20, 95   % 

Characteristics 

 

P=0.01 P=0.05 P=0.1 

    
1  2      

1  2      
1  2  

Number of non- defectives 

group on the 1st test 

39.328     2.8819     -.1709     3.0407     18.604  3.4090     0.1603     3.0714     7.9660     2.6810     0.2306     2.8109     

Number of  non-defective 

groups on re-test 

2.3860     1.4937     0.6457     3.3194     2.3970    1.5047     0.5207    3.7208     2.3680    1.5230     0.5571    3.7657     

Number of defective groups 

on the re- test 

8.2860 2.6445 0.1395 3.0004 28.999 3.5002 -.2052 2.8431 39.666 2.8472 -.0960 2.8837 

Number of group tests 60.672 - - - 81.396 - - - 92.034 - - - 

Total number of individual  

tests 

165.72 52.890 0.1395 3.0004 579.98 70.004 -.2052 2.8431 793.32 56.944 -.0960 2.8837 

Total number of  tests 227.39 52.890 0.1395 3.0004 662.38 70.004 -.2052 2.8431 886.35 56.944 -.0960 2.8837 

Total testing cost 22.739 5.2890 0.1395 3.0004 66.238 7.0004 -.2052 2.8431 88.635 5.6944 -.0960 2.8837 

Percentage savings 77.261 5.2890 0.1395 3.0004 33.762 7.0004 -.2052 2.8431 11.365 5.6944 -.0960 2.8837 
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4.2.4 Misclassifications in the Retesting Scheme 

 As observed in the earlier design of Dorfman procedure when imperfect tests are used 

misclassifications are bound to occur. Similarly misclassifications may occur in this proposed 

testing design. This is the discussion of the present section. The sensitivity of the retesting 

procedure; 

'

'

'

'

'
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                     (4.49) 

Equation (4.49) provides the sensitivity of the testing procedure; hence the false positive 

probability is given by 

1
rp rf Sensitivity 

               
 

31 .
rpf  

                                          
(4.50) 

Note that 
3  since 0 1   thus testing procedure lowers the sensitivity. 

Similarly
3 2  , and hence the sensitivity of this re-testing procedure is less than that of the 

procedure discussed in the preceding section. 

Now the specificity of this testing procedure is given by 

' 'Pr( 0 | 0) Pr( 1, 0 | 0) Pr( 1, 1, 0 | 0).
i ir i ij i ij i ij ijSpecificity T D T T D T T T D             

 

(4.51) 
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We derive the probability Pr( 0 | 0)i ijT D  as follows; 
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(4.52) 

Next we consider
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(4.53) 
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and 
'Pr( 1, 1, 0 | 0)
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(4.54) 

thus combining Equations (4.52), (4.53) and (4.54), we obtain the specificity of the procedure  

as 
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    (4.55) 

This design improves the specificity. The false negative probability is given as 

  1 .
rn rf specificity 

                                   
(4.56) 

Utilizing the above Equations (4.50) and (4.56) we compute the moments of 

misclassifications at different group sizes for various probabilities of incidence p. The 

moments of false positives are presented in Tables 4.21a and 4.22b. The tables present the 

false positives for sensitivity and specificity of 99% and 95% for sample sizes; 100, 500 and 

1000 with group sizes 10, 20 and 20 respectively. The following observations are made; 

a) The number of false positive increase with increase in the incidence probability p, 

b) The number of false positive increase when the group size is large, in fact when the 

group  size is doubled false positives increase by at least two fold,  

c) Increase in the efficiency of the test kits results in reduction in false positive i.e. the 

higher the sensitivity and specificity the fewer the false positives realized. 
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Computations of false negatives are provided in Tables 4.22a and 4.22b. From these tables, 

we observe that: 

a) The number of false negative increase at a slow rate with increase in the incidence 

probability p, 

b) The number of false negative approximately doubles when the sample size is doubled 

and group size is maintained, 

c) If the efficiency of the test is increased, less false negatives are realized.  
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Table 4.21a: Number of false positives in the group testing with retesting strategy for different group sizes for 99   % 

Probabili

ty, p 

N =100, k=10 N =500,k=20 N =1000,k=20 

    
1  2      

1  2      
1  2  

0.01 0.0298 0.1699 5.5352 28.6422 0.1427 0.3721 2.5277 5.9728 0.2913 0.5317 1.7691 2.9258 

0.02 0.0602 0.2416 3.8927 14.1656 0.2926 0.5328 1.7652 2.9131 0.5893 0.7562 1.2439 1.4465 

0.03 0.0870 0.2905 3.2375 9.7984 0.4428 0.6555 1.4350 1.9250 0.8841 0.9262 1.0156 0.9642 

0.04 0.1188 0.3396 2.7700 7.1731 0.5861 0.7541 1.2472 1.4542 1.1762 1.0683 0.8804 0.7247 

0.05 0.1435 0.3732 2.5206 5.9395 0.7344 0.8442 1.1142 1.1606 1.4654 1.1924 0.7888 0.5817 

0.1 0.2930 0.5332 1.7642 2.9095 1.4624 1.1912 0.7896 0.5829 2.9246 1.6846 0.5584 0.2915 

0.15 0.4361 0.6505 1.4460 1.9546 2.1784 1.4539 0.6470 0.3913 4.3606 2.0570 0.4573 0.1955 

Table 4.21b: Number of false positives in the group testing with retesting strategy for different group sizes for 95   % 

Probabili

ty, p 

N =100,k=10 N =500,k=20 N =1000,k=20 

    
1  2      

1  2      
1  2  

0.01 0.1623 0.3730 1.9160 1.9137 0.8085 0.8326 0.8585 0.3841 1.6098 1.1748 0.6084 0.1929 

0.02 0.2988 0.5061 1.4121 1.0395 1.4606 1.1191 0.6387 0.2126 2.9355 1.5865 0.4505 0.1058 

0.03 0.4168 0.5978 1.1957 0.7453 2.1019 1.3424 0.5324 0.1478 4.2150 1.9010 0.3760 0.0737 

0.04 0.5555 0.6901 1.0357 0.5591 2.7227 1.5279 0.4678 0.1141 5.4826 2.1681 0.3297 0.0567 

0.05 0.6822 0.7648 0.9346 0.4553 3.3942 1.7059 0.4190 0.0915 6.7955 2.4138 0.2961 0.0457 

0.1 1.3217 1.0645 0.6714 0.2350 6.6171 2.3819 0.3001 0.0469 13.2175 3.3664 0.2123 0.0235 

0.15 1.9276 1.2856 0.5560 0.1611 9.8323 2.9034 0.2462 0.0316 19.5610 4.0953 0.1745 0.0159 
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Table 4.22a: Number of false negatives in the group testing with retesting strategy for different group sizes for 99   % 

Probabil

ity, p 

N =100,k=10 N =500,k=20 N =1000,k=20 

    
1  2      

1  2      
1  2  

0.01 0.0840 0.2897 3.4459 11.8539 0.8439 0.9179 1.0858 1.1749 1.6878 1.2981 0.7678 0.5874 

0.02 0.1599 0.3995 2.4949 6.2043 1.5314 1.2356 0.8043 0.6428 3.0626 1.7473 0.5687 0.3214 

0.03 0.2283 0.4772 2.0856 4.3293 2.0905 1.4428 0.6871 0.4681 4.1797 2.0400 0.4860 0.2341 

0.04 0.2897 0.5375 1.8494 3.3994 2.5414 1.5900 0.6223 0.3831 5.0812 2.2482 0.4401 0.1916 

0.05 0.3444 0.5858 1.6947 2.8510 2.9018 1.6983 0.5816 0.3341 5.8008 2.4011 0.4114 0.1671 

0.1 0.5419 0.7339 1.3461 1.7900 3.8251 1.9475 0.5048 0.2504 7.6480 2.7538 0.3570 0.1252 

0.15 0.6433 0.7990 1.2327 1.4961 3.9910 1.9884 0.4935 0.2389 7.9783 2.8113 0.3490 0.1195 

Table 4.22b: Number of false negatives in the group testing with retesting strategy for different group sizes for 95   % 

Probabil

ity, p 

N =100, k=10 N =500,k=20 N =1000,k-20 

    
1  2      

1  2      
1  2  

0.01 0.3971 0.6289 1.5773 2.4675 3.9282 1.9741 0.4985 0.2445 7.8566 2.7918 0.3525 0.1222 

0.02 0.7447 0.8597 1.1455 1.2918 7.0875 2.6429 0.3674 0.1309 14.1722 3.7373 0.2598 0.0655 

0.03 1.0594 1.0236 0.9556 0.8925 9.6540 3.0760 0.3122 0.0933 19.3125 4.3507 0.2207 0.0466 

0.04 1.3424 1.1505 0.8449 0.6931 11.7331 3.3833 0.2811 0.0749 23.4679 4.7849 0.1988 0.0374 

0.05 1.5948 1.2522 0.7718 0.5747 13.4060 3.6095 0.2615 0.0642 26.8125 5.1047 0.1849 0.0321 

0.1 2.5157 1.5640 0.6040 0.3428 17.7311 4.1278 0.2233 0.0455 35.4220 5.8343 0.1580 0.0228 

0.15 2.9931 1.6998 0.5475 0.2766 18.5761 4.2162 0.2168 0.0423 37.1598 5.9632 0.1533 0.0212 
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4.3 Comparison of the Two Testing Designs 

As observed in the study, variations in the incidence probability impact on the 

parameters of the two models.  Truly, the gist of group-testing is to minimize the number of 

tests and errors in the experiment. The discussion below is a comparison of the two group-

testing models considered in the study. 

 

Figure 4.1: Total Number of Tests in the Dorfman Testing Procedure and the Proposed                

         Testing Procedure 
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Figure 4.2: Average Number of False Positives in the Dorfman Testing Procedure and 

         the Proposed Testing Procedure 

 
Figure 4.3: Average Number of False Negatives in the Dorfman Testing Procedure and 

         the Proposed Testing Procedure 

 

 Figures 4.1, 4.2 and 4.3 show the shape taken when we vary the sample sizes, group 

sizes and the efficiency of the tests in each testing procedure. We observe that the two testing 

procedures have the following similarities: 
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a) As the incidence probability increases, the number of defectives increase which leads 

to an increase in the cost of testing hence decreasing the relative savings; this is 

evident in Figure 4.1, 

b) The number of defectives realized increase when tests with lower sensitivity and 

specificity are used; this in turn increases the misclassifications, 

c) As the incidence probability increases, the number of misclassifications increases as 

depicted in Figures 4.2 and 4.3. 

On the other hand the two testing strategies have the following differences: 

a) The Dorfman testing strategy has fewer numbers of tests than the proposed testing 

strategy of pool testing with re-testing as shown in Figures 4.1 hence re-testing comes 

with a cost, 

b) There is a significant reduction in the number of false negatives in the proposed 

testing strategy as compared to the Dorfman (1943) testing strategy as depicted in 

Figures 4.3, 

c) The proposed testing strategy reduces the sensitivity of the testing proposed and hence 

the number of false positives is high in this strategy as compared to the Dorfman a 

procedure; this is evident in Figure 4.2, 

d) When 0.12p  , the numbers of false positives in the Dorfman procedure become 

redundant. This calls for re-testing since the Dorfman procedure fails to depict any 

misclassifications beyond this value of p. The proposed design of group testing with 

re-testing is viable in such situations. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 Summary 

 In this chapter we present a conclusion to our study. This will help in drawing 

recommendations and open problems for further research. Section 5.1 presents the 

conclusions to the present study whereas the recommendations and further research are 

presented in Sections 5.2 and 5.3 respectively.  

 5.1 Conclusions 

From the results obtained in both testing schemes, group testing is an economical 

testing strategy if the prevalence rate is low. It has been observed that when the value of p 

increases, the number of tests increase hence a decrease in savings. The higher the prevalence 

rate not only increases the cost of testing but also increases the misclassifications. It was also 

observed that when the group size increases, the number of tests and error rates increase. The 

increased misclassifications can be attributed to a dilution effect especially when the 

prevalence rate is low. A large group with a few defective individuals may be misclassified as 

non-defective.  From the results of this study, it has been observed that group testing is only 

viable in situations where the efficiency of the test-kits is high and low prevalence rate. The 

lower the sensitivity and specificity of the test-kits, the higher the number of tests and 

misclassifications via Tables (4.7) and (4.8).  The group testing scheme without re-testing 

when imperfect tests are used fails to detect any false positives for values of 0.12p   as seen 

in Figure (4.2). At this point the Dorfman (1943) design becomes redundant hence calling for 

a better design and thus re-testing comes in handy. 

The Monzon et al. (1992) design of group testing with re-testing comes with more 

cost since it increases the number of tests as compared to the Dorfman (1943) design. 

However, the design considerably reduces the number of false negatives since it increases the 

specificity of the testing procedure. Conversely, this procedure lowers the sensitivity of the 

testing procedure since only the groups that were initially classified as positive are re-tested. 

This calls for re-testing both the pools initially classified as positive and negative as 

suggested an open problem for further research.   

5.2 Recommendations 

 Group testing is feasible in low prevalence populations. The proposed re-testing 

model reduces the misclassifications to some extent; in particular the false negatives, making 
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the model viable in blood donation. Re-testing only the initially declared positive groups 

improves the specificity of the testing procedure. Groups that were initially declared as 

negatives should also be re-tested so as to improve the sensitivity of the testing scheme.  

Single re-testing cannot eliminate misclassifications completely. Therefore, these calls for 

repeated testing on the same subject, for minimal errors, although it is not easy to establish 

the optimal number of re-tests that can be performed.  

5.3 Further Research 

 Single re-testing fails to eliminate misclassifications completely calling for repeated 

testing although it is not easy to establish the optimal number of re-tests that can be 

performed. This is an open area for further investigation. Hierarchical computation can also 

help minimize the number of tests and errors, and according to the literature available no 

computational hierarchical models exists in group-testing literature. Furthermore, models can 

be considered when destruction is allowed in modeling, in such situation Monte-Carlo 

methods can be in handy especially for the computational models. 
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APPENDIX 

In this appendix we provide MATLAB codes for simulations purposes for the two models. 

MATLAB Code (1): Generation of Moments for the Group Testing without Retesting 

Procedure 

%This program generates moments for the Dorfmans' procedure we used se and sp for 

sensitivity %and specificity respectively, p is the incidence probability, k is the group size, N 

is sample size, n is number of groups and pro is probability of classifying a group positive. 

p=0.2; 

se=0.99; 

sp=0.99; 

k=10; 

N=100; 

n=N/k; 

pro=(1-p)^k*(1-se)+(1-(1-p)^k)*(sp); 

pro2=(1-p)*(1-se)+(1-(1-p))*(sp); 

%to obtain the number of the defective groups from 1000 simulations 

x=binornd(n,pro,1,1000); 

m=mean(x); 

s=std(x); 

k1=kurtosis(x); 

s1=skewness(x); 

%to obtain the number of defective individuals then we assume that the group size is 1 

x1=binornd(N,pro2,1,1000); 

m1=mean(x1); 

s2=std(x1); 

k11=kurtosis(x1); 

s12=skewness(x1); 

% since the average number of def. might be less than 1 we find the false negatives and false 

%positives by using the computation formulae for finding mean and variance for a binomial 

%distribution. Let fp be the number of false positives, fn be number of false negatives fse be 

%false sensitivity and fsp be false specificity  

fse=1-se^2; 

fp=m1*fse 
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sp1=(1-(1-p)^(k-1))*(se*sp+(1-sp))+(1-p)^(k-1)*((1-sp)*sp+sp); 

fsp=1-sp1; 

stdfp=sqrt(m1*fse*(1-fse)); 

skwefp=(1-2*fse)/(sqrt(m1*fse*(1-fse))); 

kurfp=(1-6*fse*(1-fse))/(m1*fse*(1-fse)); 

%to obtain the negatives it’s obviously the difference between the population and the positive 

%individuals and hence false negatives and false negatives were obtained as; 

m2=N-m1; 

fn=m2*fsp; 

fp=m1*fse; 

stdfn=sqrt(m2*fsp*(1-fsp)); 

skwefn=((1-2*fsp))/(sqrt(m2*fsp*(1-fsp))); 

kurfn=(1-6*fsp*(1-fsp))/(m2*fsp*(1-fsp)); 

 

MATLAB Code (2): Generation of Moments for the Group Testing with Retesting 

Procedure 
 

%This program generates moments for the Proposed procedure we used se and sp for 

%sensitivity and specificity respectively, p is the incidence probability, k is the group size, N 

%is sample size, n is number of groups and p1 is the probability of declaring a group 

%positive on the initial test p2, p3 are probabilities of classifying a group negative before and 

%after re-testing respectively, p4 be the probability of classifying a group negative on 

%retesting of initially declared positive groups and pro be the vectors of probabilities 

p=0.2; 

se=0.99; 

sp=0.99; 

k=10; 

N=100; 

n=N/k; 

p1=(1-p)^k*(1-se)+(1-(1-p)^k)*(sp); 

p2=(1-p)^k*se+(1-(1-p^k))*(1-sp); 

p3=sp*(1-sp)*(1-p)^k+(1-(1-p)^k)*se*(1-se); 

p4=1-p2-p3; 

pro=[p2 p3 p4]; 

m=mean(mnrnd(n,pro,1000)); 
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s=std((mnrnd(n,pro,1000))); 

skw=skewness((mnrnd(n,pro,1000))) 

kur=kurtosis((mnrnd(n,pro,1000))) 

%to find the number of defective individuals we assume that the group size is 1 and now find 

%the various probabilities represented by p 

pr2=(1-p)*se+(1-(1-p))*(1-sp); 

pr3=sp*(1-sp)*(1-p)+(1-(1-p))*se*(1-se); 

pr4=1-pr2-pr3; 

pro1=[pr2 pr3 p4]; 

m1=mean(mnrnd(N,pro1,1000)); 

s1=std((mnrnd(N,pro1,1000))); 

skw1=skewness((mnrnd(N,pro1,1000))); 

kur1=kurtosis((mnrnd(N,pro1,1000))); 

%note that we can derive directly p4 

p4=(1-sp)^2*(1-p)^k+se^2*(1-(1-p)^k); 

%to find the sensitivity of the testing procedure let se1, sp1 be the sensitivity and specificity 

%of this testing procedure respectively and fse1, fsp1 be the false sensitivity probability and 

%false specificity probability of this procedure   

se1=(se)^3; 

sp1=1-(1-sp)*((se)^2*(1-(1-p)^(k-1))+(1-sp)^2*(1-p)^(k-1)); 

fse1=1-se1 

fsp1=1-sp1 

% let mm1 be the number of defectives in the retest so we 

calculate its 

% moments 

mm1=m1(3); 

fp1=mm1*fse1; 

stdfp1=sqrt(mm1*fse1*(1-fse1)); 

skwefp1=(1-2*fse1)/(sqrt(mm1*fse1*(1-fse1))); 

kurfp1=(1-6*fse1*(1-fse1))/(mm1*fse1*(1-fse1)); 

% let mm2 be the number of non-defectives in the retest so we 

calculate its 

% moments 

mm2=m1(1)+m1(2); 
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fn1=mm2*fsp1 

stdfn1=sqrt(mm2*fsp1*(1-fsp1)) 

skwefn1=((1-2*fsp1))/(sqrt(mm2*fsp1*(1-fsp1))) 

kurfn1=(1-6*fsp1*(1-fsp1))/(mm2*fsp1*(1-fsp1)) 

 

 

 

 

 

  

  

  

 

 


