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Abstract 
 
We consider a free surface flow past a flat plate. We consider relations 
between the results of Anderson and Vanden-Broeck (1996) and those of 
Osborne and Stump (2000), and present new solutions. There is need to 
know the number of parameters needed to fix solutions uniquely. We show 
here that there is a three parameter family of solutions when the fluid is of 
finite depth. These solutions are characterised by a train of waves in the 
downstream region and by a discontinuity in slope at the separation point. 
The family includes a two parameter sub-family for which the free surface 
leaves the plate tangentially. It is shown that this sub-family reduces to the 
linear solutions of Osborne and Stump (2000) when the depth of 
submergence of the plate is small. Also, the three parameter family reduces 
to the one parameter family of Anderson and Vanden-Broeck (1996) as the 
depth of the water tends to infinity. Finally, fully nonlinear solutions with 
large capillary waves are presented. 
 
 Key words:  Free surface, flat plate, surface tension, capillary waves, 

wavelength, waveless 
 

Introduction 
 
Free surface flows past surface objects pose difficult mathematical problems 
due to strong singularities that occur at the intersections of rigid walls with 
free surfaces. An example is the free surface flow generated by a ship 
moving at a constant velocity at the surface of water. The singularity takes 
the extreme form of sprays or jets at the bow of the ship. Here, a highly 
simplified geometry for which such singularities do not occur or are not 
known analytically. In this case we assume that the surface is a flat plate and 
that the free surface separates from the end of the plate, Figure 1. 
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If the separation point was on top of the plate, then there would be a point 
inside the flow with an infinite velocity. Vanden Broeck (1984) included 
gravity and neglected surface tension. We use the conservation of 
momentum theorem to derive an exact relation between the steepness of the 
waves and the Froude number. Vanden-Broeck (1996) assumed that the 
depth is infinite and considered only the effect of surface tension, computed 
a one parameter family of solutions with capillary waves on the free surface. 
By using conservation of momentum, they showed that these solutions are 
characterised by a discontinuity in the slope of the free surface at the 
separation point. That is, the free surface does not leave the plate 
tangentially. Osborne and Stump (2000) considered the same problem in 
water of finite depth, linearized the equations and solved the resulting 
equations using the Weiner-Hopf techinique (1987). A two parameter family 
of solutions for which the free surface leaves the object tangentially was 
obtained. 
 
In this paper, we consider relations between the results of Anderson and 
Vanden-Broeck (1996) and those of Osborne and Stump (2000), and present 
new solutions. We need also to know the number of parameters needed to fix 
solutions uniquely. It will be shown that there is a three parameter family of 
solutions when the fluid is of finite depth. These solutions are characterised 
by a train of waves in the downstream region and by a discontinuity in slope 
at the separation point. The family includes a two parameter sub- family for 
which the free surface leaves the object tangentially. It is shown that this 
sub-family reduces to the linear solutions of Forbes and Schwarz (1982) 
when the depth of submergence of the object is small. Also, the three 
parameter family reduces to the one parameter family of Anderson and 
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Figure 1:  Diagrammatic representation of the flow
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Vanden-Broeck (1996) as the depth of the water tends to infinity. Finally, 
fully nonlinear solutions with large capillary waves are presented. 
 
Mathematical Formulation 
 
We consider a semi-infinite horizontal surface AB in a uniform stream where  
the plate  is at the fluid surface. The stream is finite in depth bounded by a 
horizontal bottom ‘DE, see Figure 1’. There is a free surface beginning 
where the plate AB ends and extending into the far field. The point B is the 
separation point and acts as the origin. The object AB is in the same 
horizontal plane as the x-axis. As  x −∞→  , the flow reduces to a uniform 
stream with velocity U and uniform depth H. 
 
We neglect the effects of gravity and consider the effects of surface tension, 
so that 
 
Bernoulli's equation gives:    

*
2 2 **1 ( )

2 x y
pu u C
ρ

+ + =       (1) 

where  xu  and yu  are the dimensional and vertical components of velocity 

respectively, ρ  is the density, *p  is the fluid pressure and **C  is the 
dimensional Bernoulli's constant.  
 
For this problem it is essential to find the shape of the free surface. For an 
element of free surface ds, if  0→ds , then the said element can be 
considered as an arc of a circle with centre O and radius R, see Figure 2. 
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Figure 2: A section of a free surface 
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The surface element is bisected by BO such that  <AOB = <BOC = 1θd . 
The resultant force due to surface tension τ acting on this element ds in the 
normal direction is the sum of the forces at the two end points, that is, 
 
      Net force  = 2τ sin θ ′d       (2) 
 
As 0→ds , θ ′d 0→  and so there is a force 2τ sin 2d dθ τ θ′ ′≈  (3) 
 
directed along BO. This force must be balanced by a force due to the 
pressure difference across the free surface. This is because the forces are 
acting on an element of zero mass. If we let P be the fluid pressure, aP  be the 
atmospheric pressure and equating force components along the normal OB 
gives: 
       2 ( )ad P P dsτ θ ′ = −       (4) 
since 0→ds , then    ds = 2R θ ′d      (5) 
 
Substituting (5) into (4) gives: 

( )aP P ds ds
R
τ

− = that is, *( )aP P k
R
τ τ− = =    (6) 

where 
R

k 1* =  is the curvature. 

Substituting (6) into (1), we obtain 

     
*

2 2 **1 ( )
2 x y

ku u Cτ
ρ

+ + =      (7) 

We now non-dimensionalize equation (7) by choosing U as typical velocity 
and H as a typical length so that equation (7) now becomes 

    2 2 *
2

1 ( )
2

ku v C
HU
τ

ρ
+ + =      (8) 

where  2

**
*

U
CC =  is the dimensionless Bernoulli's constant. 

The kinetic boundary conditions are 
V = 0 on AB and DE      (9) 

 
We also introduce a complex potential function, f = ψφ i+ . Let 0=φ  at B 
and  1−=ψ along the bottom DE. The image of the flow in the plane is an 
infinite strip (Figure 3). 
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The kinematic boundary conditions (9) are now written as 
         v = 0 on 0=ψ ,  0<φ        (10) 
and         

v = 0 on 1−=ψ , ∞<<∞− φ     (11) 
We introduce a conformal mapping where 
 
    ( ) [cos sin ]f ii e e e iπ π φ ψ πφη α β πψ πψ− − + −= + = = = −    (12) 
 
Below is Table 1 to show how the points in the Cartesian plane are 
transformed through the f-plane and η -planes. 
 
Table 1: Comparison of f-plane and η -planes 

  Cartesian Plane    f-plane    η -planes 
            A  −∞=== Aφφψ ,0      0, =∞== βαα A  
            B   0,0 === Bφφψ      0, 0Bα α β= = =  
            C   ∞=== Cφφψ ,0     0,0 === βαα C  
            D    −∞==−= Dφφψ ,1      0, =−∞== βαα D  
            E    ∞==−= Eφφψ ,1       0,0 === βαα E  

                
It can be seen that the fluid boundaries ABC and DE, Figure 1, have been 
mapped onto the real axis of the η -plane, see Figure 4.   
 
We introduce the complex velocity as u - iv to give: 

u - iv  = 
dz
df

x
i

x
=

∂
∂

+
∂
∂ ψφ        (13) 
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Figure 3: Flow representation in the f-plane 
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the complex velocity is also an analytic function of  z = x + iy since the 
derivative of an analytic function itself is analytic function. A new complex 
function, that is, 

   ln( )dfi
dz

θΓ − =  is introduced and is related to the complex velocity by 
iu iv e θΓ−− =         (14)    

 
We use this to rewrite equation (8) in terms of the new variables Γ  and θ  
giving 

     2 *1
2

e e Cθδ
φ

Γ Γ ∂− =
∂

 on BC     (15) 

where  2HU
τδ

ρ
=  

 
 
 
 
 
                                                  
 
 
 
                                                                                                  
                                                                                                            
We now rewrite the kinematic boundary conditions (10) and (11) in terms of  
θ  to fit in the η -plane as: 

θ  =0 for α >1 and β =0      (16) 
and   

θ  =0 for  α < 0 and β =0      (17) 
 
Applying Cauchy integral formula to the function τ -iθ , gives: 

0 0
0

1 ( , ) ( , )( ,0) ( ,0) ii d
i γ

α β θ α βα θ α η
π η α

Γ −
Γ − =

−∫   (18) 

where 0α  is a point on the real axis, γ  is a contour in the η  plane consisting 
of the real axis, β =0, with a circular identation about the point 0α  and a half 
circle of arbitrary large radius extending into the upper half plane, Forbes et 
al., (1982). Letting the radius of the semi-circle to be R and taking limit as 

∞→R , equation (18) becomes, 

D 
α

A 
C 

β

E β

Figure 4: Flow region in the η  plane on the upper 
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0 0
0

1 ( ,0) ( ,0)( ,0) ( ,0) ii d
i

α θ αα θ α α
π α α

∞

−∞

Γ −
Γ − =

−∫   (19) 

where the integral is defined as a cauchy principle value. Considering only 
the real part of (19) and separating it into three integrals relating to the 
bottom DE, the plate AB and the free surface BC gives: 

0 1

0
0 0 00 1

1 ( ,0) ( ,0) ( ,0)( ,0)   
-

d d d
i

θ α θ α θ αα α α α
π α α α α α α

∞

−∞

Γ = − + +
− −∫ ∫ ∫  (20) 

when applying the boundary conditions (16) and (17), it can be seen that no 
contribution is made by the first and last integrals, so equation (20) 
simplifies to  

1

0
00

1 ( )( )  
-

dθ αα α
π α α

Γ = − ∫       (21) 

where 
      0 0( ) ( ,0)α αΓ = Γ  and )0,()( 0 αθαθ = . 
Considering the real part of equation (12) gives: 
       πφα −= e  
      φπα πφded −−=        (22) 
Using this change of variables in equation (21), then the differential equation 
to be solved is: 

      
1 1

1
2 *1

2
e e Cθτ

φ
Γ Γ ∂
− =

∂
      (23) 

with 

0

1
1

0

( )( ) e d
e e

πφ

πφπφ

θ φφ φ
∞ −

−−Γ = −
−∫       (24) 

where 
     1( ) ( )e πφφ −Γ = Γ  and )()(1 πφθφθ −= e . 
 
Numerical Methodology 
 
The aim is to calculate τ  at points along the free surface in terms of θ  by 
evaluating the integral in equation (23) numerically. These values are 
substituted in equation (23) to create a system of nonlinear equations for θ  
that are then solved by Newton iterations. 
 
If we consider the parameters of the problem, the calculation of Γ used a 
uniform mesh, created in the f-plane. The mesh covered the region 
representing the free surface, (King et al 1987). The family of solutions with 
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a discontinuity at the separation point B, that is, 01 ≠θ  depend on the 
following three parameters: Fixing the surface tension parameter, δ , setting 
a value to the separation angle, 1θ , a third parameter is the mean water level, 
d, of the waves in the far field, figure 1. For an arbitrary wave, Figure 5, the 
mean water level can be evaluated by the formula, Hoffman (1992): 

∫=
2

1

1 l

l

ydxd
λ

        (25) 

Therefore, we need to know the wavelength of the free surface profile before 
doing any calculations. This can be easily done if the waves are of small 
amplitude. Using the linear dispersion relation for capillary waves, 

*
* * *tanh( )kq k hτ

ρ
=       (26) 

where *q  is the flow speed in the region with waves, *k  is the wave number 
and  *h  is the height of the water level above the horizontal bottom. Here * 
indicates that the parameters are dimensional. 
 
 
 
 
 
 
 
                
 
                                                                                                                          
                                                                                                                   
     
 
                  
 
                                   
Equating the mass fluxes to the left and right of the separation point where 
only waves of small amplitude are, consider, 

UH = )( ** Hdq +  
        or 

Hd
UHq
+

= *
*        (27) 

 
combining equations (26) and (27), we obtain 

-H 

h 

d 

l2 l1 

Figure 5: Free surface profile 
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2 2 *

* 2 * *

2 2 ( )tanh( )
( )

U H d H
d H

πτ π
ρλ λ

+
=

+
    (28) 

 

where *
* 2

k
πλ =  is the wavelength. 

Non-dimensionalizing using the typical length H and velocity  ∞U  gives: 

         
H

*λλ = ,  
H
dd

*

=        (29) 

 
substituting (29) into (28) gives: 

2 2

2

2 2 ( )tanh[ ]
( )

U H dH H
dH H H H

πτ π
ρλ λ

∞ +
=

+
    (30) 

Multiplying (30) by  2

1

∞U
 yields 

2 2

1 2 2 ( 1)tanh[ ]
( 1)

d
d HU

τ π π
ρ λ λ∞

+
=

+
     (31) 

where  2HU
τ δ

ρ ∞

=  and d and δ  are fixed parameters which can be used in 

equation (30) to solve for wavelength, λ . 
 
Rewriting equation (31) gives 

0
)1(

1])1(2tanh[2)( 2 =
+

−
+

=
d

dF
λ

π
λ
πδλ     (32) 

 
We use the root bisection method by introducing two approximations 1λ  and 

2λ  of the wavelength ,λ one being small and the other large respectively. 
To determine that the solution lies within the interval [ 1λ , 2λ ], it is necessary 
to check that  

F( 1λ )F( 2λ )< 0        (33) 
If the solution λ lie in the interval [ 1λ , 2λ ] due to change in sigh, then the 
function is evaluated at the midpoint of the interval. Again the sign is 
checked and the midpoint is used to replace whichever limit has the same 
sign. The process is repeated until the root has a significant accuracy. 
 
Having known the wavelength, the uniform mesh is created. By making the 
mesh to be dependent on λ means that it is possible to know how many 
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mesh points are in one wavelength, Vanden Broeck (1984). The mesh is 
created in the f-plane along the region representing the free surface, 0=ψ  
and  ∞<≤ φ0  by 

       
n

II
λφ )1( −= , I = 1-------------N     (34) 

The distance between consecutive mesh points is 
n
λ  where n is the number 

of mesh points in one wavelength. We introduce midpoints at which τ  can 
be calculated to avoid singularities. Let 

       
2

1 IIm
I

φφ
φ

+
= + ,   I = 1--------------(N-1)    (35) 

and using (24), we have  
1

0

( )( ) m
I

m m
I I

e d
e e

πφ

πφπφ

θ φφ φ
∞ −

−−
Γ = Γ = −

−∫      (36) 

where the right hand side of equation (36) is a Cauchy principle value 
integral and can be approximated using the trapezoidal rule with a 
summation over  Iφ . This gives: 

1

j

m
j I

N
j jm

I
j

e w
ne e

πφ

πφ πφ

θ λ−

− −
=

Γ = −
−

∑  , I = 1---------------------(N-1)  (37) 

where  
2
1

=jw  for j = 1, N and 1=jw  otherwise, )( II φθθ ′= . Substituting 

(37) into (23) gives a system of N-1 nonlinear equations in N-1 unknowns, 
Iθ  for I = 1-----------N, 

 
We need two more equations to complete the problem. One equation will 
come from fixing the separation angle Iθ  and the second equation comes 
from fixing the height of the mean of the wave d. Using equation (25) gives 

φ
λ

φ

φ
φdyxd

n
∫
−

=
1        (38) 

Now the system has (N+1) equations with (N+1) unknowns and hence can be 
solved using Newton's method. Newton's method for solving nonlinear 
equations is one of the most well known procedures in numerical methods, 
Agoshkov and Ambrosi, (1993). This method uses not only the function 
values but also the first derivative to help find the next approximation to the 
root. It can be extended to solve systems of nonlinear equations as follows: 

Let       
1 1

1
2 *1

2
h e e Cθδ

φ
Γ Γ ∂

= − −
∂

      (39) 
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The system can be rewritten as 
0),,( *

11 =−−−−−−−−− BN Ch αθθ  

0),,( *
12 =−−−−−−−−− BN Ch αθθ    (40)      

0),,( *
11 =−−−−−−−−−+ BNN Ch αθθ  

 
It is necessary to find BN C αθθ ~,~,~~ *

1 −−−−−−−−−  such that the system in 
equation (40) is satisfied. Let NC θ=*  and  1+= NB θα  where 

11 −−−−−−−−− Nhh  are given by equation (39), where 

1

1 ln
2 1

m jB I

m m
jI I

N
j jm

I
j

e we e
e e e

πφπφ πφ

πφπφ πφ

θ −− −

−− −
=

Δ−
Γ = −

− −
∑ , I = 1---------N  (41) 

and 

Δ
−

=
∂
∂ + II θθ
φ
θ 1  , I = 1---------------------(N-1)    (42)  

0>Δ  is the uniform increment in φ  between consecutive mesh points, then  
2 *2 1

1
1 ( )
2

m m
I Ih e e Cθ θδΓ Γ −

= − −
Δ

     (43) 

BBNh αα −=−1  and  kkNh θθ −=  where Bα  and kθ  are prescribed and Γ  is 
given by equation (41). Let  )(

1
)(

1
n

N
n

+−−−−−−−−−−− θθ  be an approximate 
solution. Each of the functions  11 +−−−− Nhh  can be expanded about the 
approximate solution to give: 

( ) ( ) ( ) ( ) 2
1 1 1 1( ) 0 ( ( ) ( )n n n nI

I N I N j j j j
j

hh h oθ θ θ θ θ θ θ θ
θ+ +
∂

−−− = = −−− + − + −
∂∑

% % % %  (44) 

Neglecting the higher order terms of equations (44) and let )1(~ += n
jj θθ , then 

equation (43) becomes: 
1

( ) ( ) ( 1) ( )
1 1

1
( ) ( )

N
n n n nI

I N j j
j j

hh θ θ θ θ
θ

+
+

+
=

∂
− − − − − − − = −

∂∑ %   (45) 
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By introducing the Jacobian matrix J, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

−−−−−−−−−−
∂
∂

∂
∂

−−−−−−−−−−−
∂
∂

=

+

+

+

+

+

)(
1

1
)(
1

1

)(
1

1
)(

1

1

n
N

N
n

N

n
N

N
n

hh

hh

J

θθ

θθ
    (46) 

 
Equation (45) can be written in matrix form as 
       11 θJh =−  
        111 hJ −−=θ        (47) 
with 1111 )( −−= nn θθθ which gives rise to the Newton iteration process, 
Hoffman (1992): 

1 ( ) 1 1 1 1 1 ( ) *( ) ( )
1( ) ( ) ( ) , ,n n n n n n

N BJ h Cθ θ θ θ α− − −= − − − − , n =1,2,3 (48) 
 
The Jacobian equation (46) is evaluated by finite differences and then 
inverted by Gausssian elimination. Once the system (48) is solved, the 
unknowns Iθ  must be used to transform from the f-plane back to the 
Cartesian plane. Using the real and imaginary parts of (13) gives the 
following identities: 

      cosx e θ
φ

−Γ∂
=

∂
        (49) 

siny e θ
φ

−Γ∂
=

∂
       (50) 

Integrating (49) and (50) gives the Cartesian coordinates necessary to view 
the free surface profile. 
 
For waves of large amplitude, the numerical scheme changes because we 
cannot fix the ordinate d. 
 
Waveless Solution 
                                                                                             
                                                                                                             
                                                 d                                
                                                                                 
                                                                                                                                                   
             
                          
 

FS  

 Figure 6: The components of the surface S 
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Here we need to show that for a non-zero separation angle, a waveless 
solution does not exist, Agoshkov and Ambrosi, (1993). The conservation of 
momentum principle will be used again to show this and the analytical work 
done will use Figure 6. 
 
Let y = d be the height of the mean elevation of the wave, let y =0 be the 
level of the object and y = -H   be the bottom. The Bernoulli equation for the 
flow region is 

        *
*

2*

2
1 Cpq =+

ρ
       (51) 

2*2*2*
yx uuq +=  

Using the conservation of momentum and neglecting body forces, we have 
σρσ ddp

ss

).(∫∫ =− nuun       (52) 

where S is any simple closed surface, n is the outward normal to that surface, 
σ is the arc length and *u  is the velocity vector. Considering only the x-
component of equation (52) implies that 

∫∫ =−
SS

dudpn σρσ )u.n(*
2      (53) 

Multiplying equation (53) by 
*1

ρ
and rearranging, it becomes 

*
*[ (u.n) ] 0x

S

pu n dσ
ρ

+ =∫      (54) 

We split the surface S into five parts, S= FS + pUBD SSSS +++ , figure 5. 
Then  

0]).([ ]*).(
*

*

S

*

B

=+=+ ∫∫ σ
ρ

σ
ρ

dnpnuudnpnuu x
Sp

x   (55) 

since u.n=0 and 0=xn  along these surfaces. We now evaluate the 
remaining three integrals. 
 
Along the surface US , 1−=xn  and .* Uu =  Using equation (54) gives 

dypUdnpu
HS

x

U

)(])u.n([
*0

2
*

*

ρ
σ

ρ ∫∫
−

+−=+    (56) 

Along the surface  1, =xD ns  and Uu =* . Using (54) gives 
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dypUdnpu
d

Hs
x

D

][])u.n([
*

2
*

*

ρ
σ

ρ
+=+ ∫∫

−

   (57) 

where  U  is the downstream velocity as ∞→x .  
 
Along the surface 0, =u.nFs . Using equation (54) gives 

10* *
*

1
0

1[ (u.n) ] ( sin ) (cos 1)
F

x x
S

p pu n d n d Rd
R

θ τ τσ σ θ θ θ
ρ ρ ρ ρ∞

+ = = − = −∫ ∫ ∫   (58) 

Using (56), (57) and (58), (54) can be rewritten in terms of DU ss ,  and Fs   to 
give 

0* *
2 2

1( ) ( ) (1 cos ) 0
d

H H

p pU dy U dy τ θ
ρ ρ ρ− −

+ − + − − =∫ ∫    (59) 

 
The second integral in equation (59) can be rewritten as 

dypUUdypU
H H

)
2
1(

2
1()(

*
2

0 0
2

*
2

ρρ
++=+∫ ∫

− −

    (60) 

This is done so that equation (51) can be used to evaluate the integral giving 

)
2
1()

2
1()

2
1(

2
1 *2

0 0
*2

*
22 CUHdyCUdypUU

H H

+=+=++∫ ∫
− −ρρ

  (61) 

The first integral can be evaluated in the same way to give: 

)
2
1)(()( *2

*
2 CUHddypU

d

H

++=+∫
− ρ

    (62) 

Substituting equations (61) and (62) into equation (59) simplifies it to the 
second integral in equation (59) can be rewritten as 

     dypUUdypU
H H
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2
1(

2
1()(

*
2

0 0
2

*
2

ρρ
++=+∫ ∫

− −

                       

This is done so that equation (51) can be used to evaluate the integral giving     

)
2
1()

2
1()

2
1(

2
1 *2

0 0
*2

*
22 CUHdyCUdypUU

H H

+=+=++∫ ∫
− −ρρ

  (63)                                

The first integral can be evaluated in the same way to give: 

)
2
1)(()( *2

*
2 CUHddypU

d

H

++=+∫
− ρ

    (64) 

Substituting equations (61) and (62) into equation (59) simplifies it to 
2 * 2 *

1
1 1( )( ) ( ) (1 cos ) 0
2 2

d H U C H U C τ θ
ρ

+ + − + − − =    (65) 
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multiplying equation (65) by 2
2

HU
 gives 

2 * 2 *
12 2

2 1 1 2( )( ) ( ) (1 cos ) 0
2 2

H d U C H U C
U H HU

τ θ
ρ

+
+ − + − − =   (66)    

As x ∞→ , equation (51) implies that  .
2

2
* UC =  Equating the mass fluxes 

for such a solution gives  
       )( dHUUH +=  
or 

.
H

dH
U
U +

=         (67) 

  
Substituting into equation (64) yields 

0)cos1(2)
2
1

2
1(22

1
22

22

2
=−−+− θδUU

UU
U

U
U    (68) 

Rearranging equation (66) gives 

 12)cos1(2 2

2

1 +−=−−
U
U

U
Uθδ     (69) 

and 
2

1 )1(
2
11cos −−+=

U
U

δ
θ      (70) 

 
Equation (69) is satisfied if 01 =θ  and  UU =  and using equation (66) then 
d =0. This is known as the uniform stream. If  UU ≠ , then cos 11 >θ   
which is a contradiction and so such a waveless solution does not exist which 
is similar to Whitham (1974) 
 
The Numerical Results and Application 
 
This confirm that there is a three parameter family of solutions and the free 
surface profiles have a discontinuity at the separation point B ( 01 ≠θ ) and a 
train of waves in the far field. For large φ  it was found there was no 
sensitivity to the choice of end point in truncating the summation in equation 
(37). This was checked by truncating further into the far field until there was 
no graphical difference in the solutions obtained. 
 
Osborne and Stump (2000) calculated free surface profiles of jets leaving 
circular and rectangular channels. They included effects of gravity only. A 



 Effects of Surface Tension over a Flow Past a Flat Plate                                                     59 
 

Egerton J. Sci. & Technol. Volume 12: 44-63 ISSN No. 2073 - 8277 
 

comparison can be made to the rectangular channel case by calculating free 
surface profiles using this numerical scheme under particular conditions. 
First the separation angle 1θ  must be equal to zero so that there is a 
continuity in slope against F where F was defined by writing the equation of 
the free surface as 
       2

1( ) ( )y F x oε ε= +       (71) 
where /( )d d hε = +  and solutions are found by assuming  1ε << , linearizing 
and solving the resultant linear equations by the Weiener Hopf technique, 

Hoffman (1992). Since d 0→  as 0ε → , ε  can be defined as .d
H

ε =  They 

described their solutions in terms of a parameter F defined by   

            F = 2 0
( )c H d
τ

ρ
→

+
       (72) 

For 1,ε << d<<H, then F =δ .  To reproduce the two profiles of Dias and 
Vanden Broeck (1989), δ  is chosen as δ =1 and δ =0 and solutions are 
computed as d 0→ . The resultant profiles for )(1 xF  are shown in figure 7, in 
which the relationship between λ  and F is displayed. These curves also 
agree with the results of Osborne and Stump (2000). In figures 8 and 9, 
waveless free surface profile when the surface tension parameter changes 
between 100 to 1. 
 
Then the scheme is used to generate the three parameter family of solutions 
that have halves on the free surface and a discontinuity in slope at the 
separation point B. Profiles are shown in figures 10, 11 and 12. In figure 10, 
the waves are close to linear sine waves. In figure 12, the profile is a 
nonlinear wave with broad crests and sharper. In the numerical scheme, it is 
possible to fix the ordinate d when the waves are of small amplitude. It is 
necessary to find an alternative parameter to fix when the amplitude of the 
wave becomes too large. 
 
 
   
               
 
 
 
 
 
 
 

Figure 7: Analysis of accuracy of numerical method on a free surface profile 
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Figure 8: Waveless free surface profiles with 0.2=Bα  
From top to bottom τ =100, 10, 1 

Figure 9: The change in 1θ  (radians) as the surface tension parameter τ changes 
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Figure 10: The change in contraction ratio as the surface tension 

parameter τ  changes 

Figure 11: Comparison of the numerical results with Gurevich's results where       
Gurevich results,___Numerical results 
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Conclusions 
 
We have considered the Boundary Integral Method to compute solutions for 
a free surface flow past a flat plate in a channel. The effects of surface 
tension was included in the boundary condition. It was discovered that there 
is a parameter family of solutions which include as a particular case the 
results computed by Osborne and Stump (2000). Also we have shown 
analytically that there are no nontrivial solutions. We have shown that there 
is a three parameter family of solutions when the fluid is of finite depth. 
These solutions are characterised by a train of waves in the downstream 
region and by a discontinuity in slope at the separation point. The family 
includes a two parameter sub- family for which the free surface leaves the 
plate tangentially. It is shown that this sub-family reduces to the linear 
solutions of Forbes and Schwarz (1982) when the depth of submergence of 
the object is small. Also, the three parameter family reduces to the one 
parameter family of Anderson and Vanden-Broeck (1996) as the depth of the 
water tends to infinity. 
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