RANKS, SUBDEGREES AND SUBORBITAL GRAPHS OF FINITE PERMUTATION GROUPS

GACHOGU ROSE WAMBUI

A Thesis Submitted to the Graduate School in Partial Fulfillment for the Requirements of the Degree of Doctor of Philosophy in Pure Mathematics of Egerton University

DECLARATION AND RECOMMENDATION

DECLARATION

This thesis is my original work and has not been submitted to any university for any award.

Signature... Date.
Gachogu Rose Wambui

SD121/0486/14

RECOMMENDATION

This thesis has been submitted for examination with our approval as university supervisors according to Egerton University regulations.

Signature
Date

Prof. Ireri N. Kamuti

Kenyatta University

Signature... Date
Dr. Moses N. Gichuki
Egerton University

COPYRIGHT

© 2019, Gachogu Rose Wambui
This thesis or any part of it may not be reproduced, stored in a retrieval system or transmitted in any form or means such as electronic, recording, mechanical, photocopying or otherwise without prior written permission of the author or Egerton University on her behalf.

All rights reserved

DEDICATION

I dedicate this job to my beloved family: My husband Francis and our children, Beatrice, Teresa, Jane and Martin.

ACKNOWLEDGEMENT

I thank almighty God for enabling me to do this study, and giving me strength and good health throughout the study period. I am grateful to Egerton University for according me the opportunity to study in the Institution.

I wish to express my sincere gratitude to my supervisors, Prof. Kamuti and Dr. Gichuki for their availability, guidance and assurance, from the initial stages of the problem to the realization of the objectives. May God bless them for their patience and readiness to review the various drafts.

The unwavering support provided by my family is worth mentioning. Thank you for the encouragement, sacrifice, challenges and support which have enabled this achievement. Special thanks to daughter Teresa for the technical input in editing. In addition, I am grateful to the OWSD-Kenya members who sacrificed their time to provide audience as I rehearsed the defense presentation, especially Dr. Patricia and Prof. Elizabeth.

My COD, Dr. Owili provided an enabling environment, but I cannot get a better phrase than thank you. I appreciate all those who contributed to the success of this work. May God bless you.

Abstract

Recent research has seen the emergence of some algebraic structures through blending of group theory, combinatorics and graph theory. The structure (G, X) is a transitive group G acting on a set X. The concepts of rank, subdegrees and suborbital graphs of (G, X) have formed a subject of recent study through variations of G and X. Several studies have taken into account the action of various subgroups of the modular group on the set of rationals including infinity ($\widehat{\mathbb{Q}}$). Recently the action of the symmetric group S_{n} on various sets has been thoroughly worked on in relation to ranks, subdegrees and suborbital graphs. However, not much has been done on the action of the subgroups of S_{n}. In view of this, the study focused on the action of the dihedral group $\left(D_{n}\right)$ and the cyclic group $C_{n}=<(12 \ldots n)>$ on unordered and ordered r-element subsets $X=\{1,2, \ldots, n\}$. Each of the actions on unordered subsets has been proved transitive, if and only if $r=1, r=n-1$ or $r=n$. This was determined by using the orbit-stabilizer theorem and Cauchy-Frobenius lemma on each action, G on X, under consideration. The rank of C_{n} on X was shown to be n, while that of D_{n} on X was $(n+1) / 2$, when n is even and $(n+2) / 2$ when n is odd. This was acheived by applying CauchyFrobenius lemma on the action of the stabilizer of x on X to count the number of orbits of X under the action of the stabilizer. The subdegrees were then deduced by counting the elements of each suborbit, by analyzing the action of the stabilizer on X. Sim's theory was then employed to construct suborbital graphs corresponding to the actions. The construction realized 3 graphs whose properties have been discussed. The study also examined the action of a cyclic subgroup of the projective special linear group on finite subsets of the set of integers, \mathbb{Z}_{p} (integers modulo p), where the action was proved transitive, rank was shown to be p and 1 connected graph was constructed. The ranks and subdegrees are significant in determination of distance-transitive representations of the linear groups and also in characterization of rank 3 permutation groups. Some group-theoretical properties are also studied through suborbital graphs. The choice of finite sets will familiarize aspiring researchers in the subject. The results have been used to investigate primitivity of the groups, which offers an opening for further research. It is expected that the results will also provide a tool for studies in Category theory, Structure and bonding in Chemistry, Hadamard matrices and Data structures in Computer science.

TABLE OF CONTENTS
DECLARATION AND RECOMMENDATION ii
COPYRIGHT iii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vi
TABLE OF CONTENTS vii
LIST OF FIGURES
LIST OF SYMBOLS xiii
CHAPTER ONE 1
INTRODUCTION 1
1.1 Background to the study 1
1.2 Statement of the problem 2
1.3 Objectives 2
1.3.1 General Objective 2
1.3.2 Specific Objectives 2
1.4 Assumptions of the study 2
1.5 Justification 3
1.6 Definition of terms 3
CHAPTER TWO 7
LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Ranks and subdegrees 7
2.3 Suborbital graphs 8
CHAPTER THREE 11
MATERIALS AND METHODS 11
3.1 Introduction 11
3.2 Criterion 11
3.2.1 Transitivity 11
3.3 Rank and subdegrees 11
3.4 Suborbital graphs 11
CHAPTER FOUR 12
RESULTS AND DISCUSSION 12
4.1 Action of the groups C_{n} and D_{n} on $X^{(r)}$ 12
4.2 Suborbitals and suborbital graphs of C_{n} acting on X 18
4.2.1 \quad Suborbital graphs of C_{6} acting on X 18
4.2.2 Suborbital graphs of C_{7} acting on X 20
4.2.3 Suborbital graphs of C_{8} acting on X 21
4.2.4 Suborbital graphs of C_{10} on X 23
4.2.5 Properties of suborbital graphs of C_{n} on X 25
4.3 Suborbitals and suborbital graphs of C_{n} acting on $X^{(n-1)}$ 27
4.3.1 \quad Suborbital graphs of C_{5} on $X^{(4)}$ 27
4.3.2 Suborbital graphs of C_{8} on $X^{(7)}$ 28
4.4 Suborbitals and suborbital graphs of D_{n} acting on X 32
4.4.1 Suborbital graphs of D_{6} on X. 33
4.4.2 \quad Suborbital graphs of D_{7} acting on X 34
4.4.3 Suborbital graphs of D_{8} acting on X. 35
4.4.4 Suborbital graphs of D_{10} on X. 37
4.4.5 Properties of suborbital graphs of D_{n} acting on X 39
4.5 Suborbitals and suborbital graphs of D_{n} acting on $X^{(n-1)}$ 43
4.5.1 Suborbital graphs of D_{6} acting on $X^{(5)}$ 43
4.5.2 Suborbital graphs of D_{7} acting on $X^{(6)}$ 44
4.5.3 Suborbital graphs of D_{8} acting on $X^{(7)}$ 46
4.6 Action of C_{n} on $X^{[r]}$. 50
4.6.1 \quad Suborbital graph of C_{2} on $X^{[2]}$ 51
4.7 Ranks, subdegrees and suborbital graphs of D_{n} on $X^{[r]}$ 51
4.7.1 Suborbitals and suborbital graphs of $G=D_{3}$ acting on $X^{[r]}$ 52
4.7.2 \quad Suborbital graphs of D_{3} on $X^{[2]}$ 53
4.7.3 Suborbital graphs of D_{3} on $X^{[3]}$ 55
4.7.4 Properties of suborbital graphs of D_{3} on $X^{[r]}$ 56
4.8 Rank, suborbits and suborbital graphs of $H=<\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)>$ on \mathbb{Z}_{p} 57
4.8.1 Action of $H=<\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)>$ on \mathbb{Z}_{p} 57
4.8.2 Suborbitals and suborbital graphs of H acting on $X=\mathbb{Z}_{\mathrm{p}}$ 58
CHAPTER FIVE 61
CONCLUSIONS AND RECOMMENDATIONS 61
5.1 Conclusions 61
5.2 Recommendations, application and further research 62
REFERENCES 63

LIST OF TABLES

Table 1: Subdegrees of D_{n} acting on $X^{(n-1)}$ when n is odd 16
Table 2: Subdegrees of D_{n} acting on $X^{(n-1)}$ when n is even 16

LIST OF FIGURES

Figure 1: The graph Γ_{1} of C_{6} on X 19
Figure 2: The graph Γ_{2} of C_{6} on X 19
Figure 3: The graph Γ_{3} of C_{6} on X 19
Figure 4: The graph Γ_{1} of C_{7} on X 20
Figure 5: The graph Γ_{2} of C_{7} on X 20
Figure 6: The graph Γ_{3} of C_{7} on X 21
Figure 7: The graph Γ_{1} of C_{8} on X 21
Figure 8: The graph Γ_{2} of C_{8} on X 22
Figure 9: The graph Γ_{3} of C_{8} on X 22
Figure 10 : The graph Γ_{4} of C_{8} on X 22
Figure 11: The graph Γ_{1} of C_{10} on X 23
Figure 12: The graph Γ_{2} of C_{10} on X 23
Figure 13: The graph Γ_{3} of C_{10} on X 24
Figure 14: The graph Γ_{4} of C_{10} on X 24
Figure 15: The graph Γ_{5} of C_{10} on X 25
Figure 16: The graph Γ_{1} of C_{5} on $\mathrm{X}^{(4)}$ 27
Figure 17: The graph Γ_{2} of C_{5} on $\mathrm{X}^{(4)}$ 28
Figure 18: The graph Γ_{1} of C_{8} on $\mathrm{X}^{(7)}$ 28
Figure 19: The graph Γ_{2} of C_{8} on $\mathrm{X}^{(7)}$ 29
Figure 20: The graph Γ_{3} of C_{8} on $\mathrm{X}^{(7)}$ 29
Figure 21: The graph Γ_{4} of C_{8} on $\mathrm{X}^{(7)}$ 30
Figure 22: The graph Γ_{i} of C_{n} on $X^{(n-1)}$ when i and n are coprime 30
Figure 23: The graph Γ_{i} of C_{n} on $X^{(n-1)}$ when $\operatorname{gcd}(i, n)=d, d>1$ 31
Figure 24: The graph Γ_{i} of C_{n} on $X^{(n-1)}$ when $i=n / 2$ 32
Figure 25: The graph Γ_{1} of D_{6} on X 33
Figure 26: The graph Γ_{2} of D_{6} on X 33
Figure 27: The graph Γ_{3} of D_{6} on X 34
Figure 28: The graph Γ_{1} of D_{7} on X 34
Figure 29: The graph Γ_{2} of D_{7} on X 34
Figure 30: The graph Γ_{3} of D_{7} on X 35
Figure 31: The graph Γ_{1} of D_{8} on X 35
Figure 32: The graph Γ_{2} of D_{8} on X 36
Figure 33: The graph Γ_{3} of D_{8} on X 36
Figure 34: The graph Γ_{4} of D_{8} on X 37
Figure 35: The graph Γ_{1} of D_{10} on X 37
Figure 36: The graph Γ_{2} of D_{10} on X 38
Figure 37: The graph Γ_{3} of D_{10} on X 38
Figure 38: The graph Γ_{4} of D_{10} on X 39
Figure 39: The graph Γ_{5} of D_{10} on X 39
Figure 40: The graph ri of Dn on X when $\operatorname{gcd}(i, n)=d, d>1$ 41
Figure 41: The graph Γ_{i} of D_{n} on X when i and n are coprime 42
Figure 42: The graph Γ_{i} of D_{n} on X when $i=n / 2$ 42
Figure 43: The graph Γ_{1} of D_{6} on $X^{(5)}$ 43
Figure 44: The graph Γ_{2} of D_{6} on $X^{(5)}$ 44
Figure 45: The graph Γ_{3} of D_{6} on $X^{(5)}$ 44
Figure 46: The graph Γ_{1} of D_{7} on $X^{(6)}$ 45
Figure 47: The graph Γ_{2} of D_{7} on $X^{(6)}$ 45
Figure 48: The graph Γ_{3} of D_{7} on $X^{(6)}$ 46
Figure 49: The graph Γ_{1} of D_{8} on $X^{(7)}$ 46
Figure 50: The graph Γ_{2} of D_{8} on $X^{(7)}$ 47
Figure 51: The graph Γ_{3} of D_{8} on $X^{(7)}$ 48
Figure 52: The graph Γ_{4} of D_{8} on $X^{(7)}$ 48
Figure 53: The graph Γ_{i} of D_{n} on $X^{(n-1)}$ when i and n are coprime 49
Figure 54: The graph Γ_{i} of D_{n} on $X^{(n-1)}$ when $i=n / 2$ 49
Figure 55: The graph Γ_{i} of D_{n} on $X^{(n-1)}$ when $\operatorname{gcd}(i, n)=d, d>1$ 50
Figure 56: The graph Γ_{i} of C_{2} on $\mathrm{X}^{[2]}$ 51
Figure 57: The graph Γ_{1} of D_{3} on $X^{[2]}$ 53
Figure 58: The graph Γ_{2} of D_{3} on $X^{[2]}$ 54
Figure 59: The graph Γ_{3} of D_{3} on $X^{[2]}$ 54
Figure 60: The graph Γ_{4} of D_{3} on $X^{[2]}$ 55
Figure 61: The graph Γ_{1} of D_{3} on $X^{[3]}$ 55
Figure 62: The graph Γ_{2} of D_{3} on $X^{[3]}$ 55
Figure 63: The graph Γ_{3} of D_{3} on $X^{[3]}$ 56
Figure 64: The graph Γ_{4} of D_{3} on $X^{[3]}$ 56
Figure 65: The graph Γ_{i} of H on \mathbb{Z}_{p}. 60

LIST OF SYMBOLS

$\Gamma_{i} \quad$ The suborbital graph corresponding to the suborbital O_{i}
$|F i x(g)| \quad$ Number of elements in X fixed by $g \in G$
$\Delta \quad$ Suborbit of G on X
$\Delta^{*} \quad$ The G-suborbit paired with Δ

O The suborbital of G on $X \times X$
$C_{n} \quad$ Cyclic group of order n generated by the element (12...n)
$D_{n} \quad$ Dihedral group of degree n and order $2 n$
$\operatorname{PGL}(n, q)$ The projective general linear group
$\operatorname{PSL}(n, q) \quad$ The projective special linear group
$S_{n} \quad$ Symmetric group of degree n and order $n!$
$\operatorname{Stab}_{G}(x) \quad$ Stabilizer of an element x in X
$X^{(r)} \quad$ Set of all unordered r-element subsets of $X=\{1,2, \ldots, n\}$
$X^{[r]} \quad$ Set of all ordered r-element subsets of $X=\{1,2, \ldots, n\}$
$G F(q) \quad$ Galois field of q elements, $q=p^{\alpha}$, for p a prime and \propto a positive integer
Q \quad The set of all rationals
$\mathbb{Z} \quad$ The set of all integers
$\widehat{\mathbb{Q}} \quad$ The rational projective line, $\mathbb{Q} \cup\{\infty\}$
$\operatorname{PSL}(2, \mathbb{Z})$ The modular group, $\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1, a, b, c, d \in \mathbb{Z}\right\}$
The congruence subgroup of the modular group,
$\Gamma_{0}(N)$ $\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, c \equiv 0(\bmod n)\right\},\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z})$
$\binom{n}{r} \quad$ All combinations of r from n

CHAPTER ONE

INTRODUCTION

1.1 Background to the study

The subject on ranks and subdegrees is based on the idea of a group action on a set. A group action on a set is a process of developing an algebraic structure through a relation defined between the permutation group G and a set X. The process suppresses major dependence on the group concept, emphasizing the permutation aspect and generalizing the pair (G, X) to have a wider application among other algebras. Such algebraic structures not only reveal connection between different areas in mathematics but also make use of known results in one area to suggest conjectures in a related area. Techniques from one area can also be used to prove results in a related area.

The study, connects three areas of mathematics. Namely; group theory, graph theory and combinatorics. The group acts by permuting the elements of X, from which transitivity is first determined. The concepts of rank and subdegrees have been studied through several permutation groups in which some group theoretic properties have been studied through graphical properties. The area of combinatorics has been used to compute the rank and subdegrees of the transitive actions.

The group action of G on X is a relation on the pair (G, X) where $g x \in X$ is a unique image of every $x \in X$ and $g \in G$ such that

- $\quad I x=x$ for all $x \in X$, and I is the identity element in G.
- $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$ for all $g \in G$ and $x \in X$.

If G acts on X, then X is partitioned into disjoint equivalence classes called orbits. For each x in X, the orbit of x is the subset of $X, \operatorname{orb}_{G}(x)=\{g x \mid g \in G\}$. The action of G on X is said to be transitive if for every pair $x_{i}, x_{j} \in X$, there exists $g \in G$, such that $g x_{i}=x_{j}$. Thus, the action has only one orbit. In this case the action is termed as simply transitive. The action is doubly transitive or 2-fold transitive if for any two ordered pairs of distinct elements (x_{1}, x_{2}) and (y_{1}, y_{2}) in X there exists $g \in G$ such that $y_{1}=g x_{1}$ and $y_{2}=g x_{2}$. Similarly, k-fold transitivity could be defined. The study will use techniques for actions which are simply transitive (Neumann, 1977).

Previous studies on ranks, subdegrees and suborbital graphs have focused on the action of the subgroups of the modular group on subsets of the rational projective line (Kamuti et al., 2012) due to their significance in the arithmetic of elliptic curves, integral quadratic forms and modular forms (Schoeneberg, 1974; Kulkami, 1991). A lot has also been done on the
action of the symmetric group S_{n} on ordered and unordered subsets of $X=\{1,2, \ldots, n\}$ by several authors. Knowledge of ranks and subdegrees is significant in identification of rank 3 graphs (Habaut, 1975) and determination of existence of distance-transitive graphs (Ivanov, 1984).

1.2 Statement of the problem

The study aims at computing the ranks, subdegrees and suborbital graphs of the groups, D_{n} and C_{n}, acting on on $X^{(r)}$ and $X^{[r]}$ among other investigations. The study investigates the properties of suborbits and suborbital graphs of the groups acting on specified sets as follows
i) $\quad D_{n}$ acting on unordered and ordered r-element subsets of $X=\{1,2, \ldots, n\}$
ii) $\quad C_{n}=<(12 \ldots n)>$ acting on unordered and ordered r-element subsets of $X=\{1,2$, $\ldots, n\}$
iii) $\quad H=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$, a subgroup of $\operatorname{PSL}(2, q)$, acting on the finite field \mathbb{Z}_{p}

1.3 Objectives

1.3.1 General Objective

To investigate the properties of suborbital graphs, through ranks and subdegrees, associated with the actions of permutation groups on finite sets.

1.3.2 Specific Objectives

i) To determine whether the action is transitive
ii) To compute ranks, suborbits and subdegrees of the action
iii) To construct suborbital graphs of the action and discuss their properties

1.4 Assumptions of the study

i) For every $x \in X, g x$ is defined in X.
ii) The actions are not all doubly transitive
iii) The set $\operatorname{Stab}_{G}(x)$ is not a maximal improper subgroup of G in all the actions

1.5 Justification

The action of the groups on finite sets uses an enjoyable and comprehensive approach from specific to general cases. The graphs are useful in the study of Hadamard matrices whose application in computers is essential, especially in error-correcting codes. It will also familiarize aspiring researchers with recent areas in algebra. When group theoretical properties are reflected graphically, the artistic value of mathematics will be portrayed.

1.6 Definition of terms

Definition 1.6.1

A group G, is cyclic if every element of G is a power of a fixed element, $\mathrm{g} \in G$. The group is said to be generated by the element g, denoted by $G=\langle g\rangle$.

The dihedral group, D_{n}, is the group of all symmetries of a regular polygon with n sides. The group is of order $2 n$ and it is generated by a rotation of order n and a reflection of order 2 .

Thus, $D_{n}=\left\{<x, y: x^{n}=y^{2}=1>\right\}$, where x is a rotation and y a reflection.

Definition 1.6.2 (The Galois Field, $\boldsymbol{G F}$ (\boldsymbol{q})

A field is a set with two binary operations of addition and multiplication in which the nonzero elements form a group under multiplication. The Galois field with q elements, $G F(q)$, is a finite field where q is a power of a prime.

Definition 1.6.3 (General Linear Group)

The general linear group $G L(n, q)$ is the multiplicative group of all $n \times n$ invertible matrices with entries from a field with q elements. The special linear group $S L(n, q)$ is the group of all $n \times n$ invertible matrices over $G F(q)$ with determinant 1 . The projective special linear group $\operatorname{PSL}(n, q)$ is the quotient of $\operatorname{SL}(n, q)$ by its centre.

Definition 1.6.4 (Projective General Linear)

The group $\operatorname{PGL}(2, q)$ over the Galois field $G F(q)$, is the group consisting of all linear fractional transformations of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, with $a, b, c, d \in G F(q)$ such that $a d-b c \neq$ 0 . The elements of the group act on $x \in G F(q)$ via the transform; $x \rightarrow \frac{a x+b}{c x+d}$.

Definition 1.6.5 (The modular group, Γ)

The modular group is the projective special linear group $\operatorname{PSL}(2, \mathbf{Z})$ with integer entries and determinant 1 . The modular group has a subgroup $\Gamma_{0}(\mathrm{~N})$, the congruence subgroup, whose elements are of the form; $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma, c \equiv 0 \bmod \mathrm{~N}$.

Definition 1.6.6 (Fixed point set)

Let G be a group acting on a finite set X. The set of all elements $x \in X$ fixed by $g \in G$ is known as the fixed point set of g, denoted by, Fix $(g)=\{x \in X: g x=x\}$.

Definition 1.6.7 (Stabilizer)

Let G act on a set X. The stabilizer of a point $x \in X$ is the set of all elements $g \in G$ which fix x, denoted by $G_{x}=\{g \in G \mid g x=x\}$. The set is also denoted by $\operatorname{stab}_{G}(x)$.

Definition 1.6.8 (Rank)

Let G act transitively on a set X. The orbits, $\Delta_{0}=\{x\}, \Delta_{1}, \ldots, \Delta_{r-1}$ of G_{x} on X are known as suborbits of G. The rank of G, in this case, is r and the sizes $\left|\Delta_{i}\right|(i=0,1, \ldots, r-1)$ the lengths of the suborbits are known as the subdegrees of G.

Definition 1.6.9 (Paired suborbits)

Let G act transitively on a set X and let Δ be an orbit of G_{x} on X. Define $\Delta^{*}=\{g x \mid g \in G$, $x \in g \Delta\}$. Then Δ^{*} is also an orbit of G_{x} and is called the G_{x}-orbit paired with Δ. If $\Delta=\Delta^{*}$, then Δ is said to be self-paired.

Definition 1.6.10 (A Graph)

A graph is a diagram consisting of an ordered pair (V, E), where V is a finite set whose members are called vertices and E a set of 2-element subsets of V called edges. If $(u, v) \in E$, then the vertices u and v are said to be adjacent. The graph is a plane figure resulting from joining u and v with a line or a curve, whenever u and v are adjacent. The graph is undirected if for every $(u, v) \in E,(v, u) \in E$. The graph is directed if for every $(u, v) \in E,(v, u) \notin E$.

Definition 1.6.11 (A path)

For any graph \mathcal{H}, a walk is a finite sequence of edges of the form, $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{m-1} v_{m}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $i=0,1, \ldots, m-1$. The integer m is called the length of the walk.

In terms of vertices, a walk is a sequence of adjacent vertices. If $v_{0}=v_{m}$, then the walk is a closed one. A walk may have the same vertex appearing more than one time in the sequence and may not end where it started. A walk in which no vertex appears more than once is a path.

Definition 1.6.12 (Girth)

If every pair of vertices is connected by a path in \mathcal{H}, then the graph is said to be connected. In such a case, the closed walk is called a cycle or a circuit. The length of the shortest cycle of \mathcal{H} is called its girth. If \mathcal{H} is connected with no cycles, then it is a tree. The graph \mathcal{H} is a forest if it is a union of trees.

Definition 1.6.13 (Connected component)

A connected component is a maximal connected subgraph of a graph.

Definition1.6.14 (Suborbital graph)

Suppose G is a transitive group acting on X. The action of G on $X \times X$ is defined by; $g(x, y)=(g x, g y), g \in G, x, y \in X$. The orbits of this action are known as suborbitals of G. The orbit containing (x, y) is denoted by $O(x, y)$. Let $O_{i} \subseteq X \times X, i=0,1, \ldots, m-1$ be suborbitals of G. The suborbital graph Γ_{i} corresponding to the suborbital O_{i} is formed by taking elements of X as the set of vertices of Γ_{i} and by drawing a directed edge from x to y if and only if (x, y) $\in O_{i}$. Hence each suborbital O_{i} determines a suborbital graph Γ_{i}.

If $O \subseteq X \times X$ is a G-orbit, then for a fixed $x \in X, \Delta=\{y \in X \mid(x, y) \in O\}$ is a G_{x}-orbit. Conversely, if $\Delta \subseteq X$ is a G_{x}-orbit, then $\left.O=(g x, g y) \mid g \in G, y \in \Delta\right\}$ is a G-orbit on $X \times X$. In this case, Δ is said to correspond to O. If $x=y$, then $O(x, x)$ is the diagonal of $X \times X$ and the corresponding graph is the trivial suborbital graph which consists of a loop based at each vertex $x \in X$.

Definition 1.6.15 (undirected graph)

Let Δ_{i} correspond to the suborbital O_{i}. Then Γ_{i} is undirected if Δ_{i} is self-paired and Γ_{i} is directed if Δ_{i} is not self-paired.

Theorem 1.6.16

Let G be transitive on X. Then G is primitive if and only if each non-trivial suborbital graph is connected (Sims, 1967).

Theorem 1.6.17

Let G act transitively on a set X, and suppose $g \in G$. The number of self-paired suborbits of G is given by $\left.\frac{1}{|G|} \sum_{\mathbf{g} \in G} \right\rvert\,$ Fix $\left(\mathrm{g}^{2}\right) \mid$ (Cameron, 1994).

Theorem 1.6.18

Let G act transitively on X. Then G_{x} has an orbit different from $\{x\}$ and paired with itself if and only if G is of even order (Wielandt, 1964).

Theorem1.6.19 (The Orbit-stabilizer theorem)

Let G be a group acting on a finite set X and $\operatorname{orb}_{\mathrm{G}}(x)$ be the orbit of $x \in X$. The size of $\operatorname{orb}_{\mathrm{G}}(x)$ is the index |G: $\operatorname{Stab}_{G}(x) \mid$ (Rose, 1978, p.72).

Theorem 1.6.20 (Cauchy - Frobenius Lemma)

Let G be a group acting on a finite set X. The number of G - orbits on X is given by $\left.\frac{1}{|G|} \sum_{\mathrm{g} \in G} \right\rvert\,$ Fix $(\mathrm{g}) \mid$, (Harary, 1969).

Definition 1.6.21 (Equivalent actions)

Let $\left(G_{1}, S_{1}\right)$ and (G_{2}, S_{2}) be permutation groups (i.e. G_{i} acts on $\left.S_{i}\right)$. The permutation isomorphism, $\left(G_{1}, S_{1}\right) \equiv\left(G_{2}, S_{2}\right)$, means there exists a group isomorphism $\phi: G_{1} \rightarrow G_{2}$ and a bijection $\Theta: S_{1} \rightarrow S_{2}$ so that $\Theta(x s)=\phi x(\Theta s)$ for all $x \in G_{1}, s \in S_{1}$.

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the various work that has been done on ranks, subdegrees and suborbital graphs. Section 2.2 reviews what has been done on ranks and subdegrees, Section 2.3 on suborbital graphs and Section 2.4 on transitivity and primitivity. Section 2.5 gives a brief summary to reveal the gap which the study focuses on.

2.2 Ranks and subdegrees

The rank of the symmetric group S_{n} acting on 2-elements subsets of the set $X=\{1,2, \ldots, n\}$ was shown to be 3 and the subdegrees as; $1,2(n-2)$, $\binom{n-2}{2}$, for $n \geq 4$ (Higman, 1970). The study on S_{n} acting on 2-elements subsets was generalized to r-elements subsets. The ranks and subdegrees of S_{n} acting on $X^{(r)}$ were computed where it was established that all suborbits of S_{n} on $X^{(r)}$ are self-paired. It was also shown that when $n \geq 2 r$, the subdegrees are; $1, r\binom{n-r}{r-1},\binom{r}{2}\binom{n-r}{r-2}, \ldots,\binom{n-1}{r}$ and the rank is $r+1$ (Nyaga et al., 2011).

A method that uses a table of marks was devised to compute the subdegrees of transitive permutation groups (Ivanov et al., 1983).

The subdegrees of all primitive permutation representations of $\operatorname{PSL}(2, q)$ were computed by (Tchuda, 1986; Bon \& Cohen, 1989) on the bases of the method proposed by (Ivanov et al., 1983). The study was extended to the subdegrees of $\operatorname{PGL}(2, q)$ on the cosets of maximal dihedral subgroups. It was shown that if $\operatorname{PSL}(2, q)$ acts on the cosets of its maximal dihedral subgroup H, then the rank is at least $|G| /|H|^{2}$ and if $q>100$, then the rank is greater than 5 (Faradzev and Ivanov, 1990). It was also established that when $\operatorname{PGL}(2, q)$ acts on the cosets of its maximal dihedral subgroup of order $2(q-1)$ then its rank is $\frac{1}{2}(q+3)$ if q is odd and $\frac{1}{2}(q+2)$ if q is even. Consequently, the subdegrees are $1, \frac{1}{2}(q-1), 2(q-1)$, and $(q-1)$ in $\frac{1}{2}(q-3)$ orbits if q is odd and $1,2(q-1)$ and $(q-1)$ in $\frac{1}{2}(q-2)$ orbits when q is even (Kamuti, 2006).

The rank and subdegrees of the symmetric group S_{n} acting on ordered r-element subsets were calculated. It was shown that if $n \geq 6$, then the rank of S_{n} on $X^{[3]}$ is 34 and that of S_{n} on $X^{[2]}$ is 7 if $n \geq 4$. Particular cases when $r=2$ and 3 were considered first and then a generalization for values of n such that $n \geq 2 r$ was made. The subdegrees of S_{n} on $X^{[2]}$ were
shown to be $1,1,(n-2),(n-2),(n-2),(n-2),(n-2)(n-3)$. This was done using combinatorial arguments together with applicable theorems in the subject (Rimberia et al., 2012a). The method has also been used in the study of the alternating group A_{n} acting on $X^{[r]}$ and $X^{(r)}$. According to Gachimu et al., $(2015,2016)$, the rank of A_{n} on $X^{[2]}$ is 7 for values of $n \geq 6$ and that of A_{n} on $X^{[3]}$ is 34 for values of $n \geq 8$. The study also generalized the rank of A_{n} on $X^{[r]}$ for all values of $n \geq 2(r+1)$. It was established that the rank of A_{n} on $X^{(r)}$ is $r+1$ when $n \geq 2 r$. Additionally, the action of A_{n} on $X^{(r)}$ was proved to be transitive for all values of $n \geq r+1$ and imprimitive for values of $n=2 r$.

On the other hand, Kimani et al. (2014) have used the method of marks in the computation of ranks and subdegrees of S_{n} acting on $X^{[2]}$ and $X^{[3]}$.

Subdegrees have been used to determine existence of distance-transitive graphs (Faradzev \& Ivanov, 1990) and also classification of families of rank 3 permutation groups (Higman, 1970).

2.3 Suborbital graphs

A study on edge-colored graphs achieved a construction of the famous Petersen graph which has 10 vertices, 15 edges and girth 5 (Neumann, 1977).

The suborbital graph of the modular group Γ on $\widehat{\mathbb{Q}}$, the extended set of rationals $(\mathbb{Q} \cup\{\infty\}$) has been investigated. The action was defined through the fractional linear transformations of the upper half-plane by elements of Γ which constitutes the pairs of matrices $\pm\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, ($a, b, c, d, \in \mathbb{Z}, a d-b c=1$). It was shown that r / s and x / y are adjacent vertices if and only if, either $x \equiv \operatorname{ur} \bmod n, y \equiv u s \bmod n$, and $r y-s x=n$ or $x \equiv-u r \bmod n, \quad y \equiv$ -us $\bmod n$ and $r y-s x=-n$ by Jones et al., (1991) where it was also conjectured that the suborbital graph is a forest if and only if it contains no triangles. The study was extended by Akbas (2001) where the conjecture was proved.

A method of constructing some of the suborbital graphs of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ acting on the cosets of their maximal dihedral subgroups of orders $(q-1)$ and $2(q-1)$ respectively was devised. This method gave an alternative way of constructing the Coxeter graph which has 28 vertices, 42 edges and girth 7 (Kamuti, 1992).

The circuits in the suborbital graphs of the normalizer of $\Gamma_{0}(N)$ on $\widehat{\mathbb{Q}}$, where N is a squarefree positive integer were investigated. It was shown that any circuit in the suborbital graph $G(\infty, u / n)$ of the normalizer of $\Gamma_{0}(N)$ is of the form;
$v \rightarrow T(v) \rightarrow T^{2}(v) \rightarrow \cdots T^{k-1}(v) \rightarrow v$, where, $n>1, v \in \widehat{\mathbb{Q}}$ and T an elliptic mapping of order k in the normalizer of $\Gamma_{0}(N)$ (Keskin, 2006).

The number of connected components of the graph, $G(0, x)$, of Γ_{∞} on \mathbb{Z} (the stabilizer of infinity in Γ acting on the set of integers) was found as $|x|$ (Kamuti et al., 2012).

2.4 Transitivity and primitivity

Investigations on the action of A_{7} on $X^{(2)}$ established the existence of a primitive group of degree 21 which contains a non-abelian regular subgroup (Nagai, 1961).

Primitive rank 3 groups of even order in which the stabilizer has an orbit of prime length have been considered. It was shown that if G has no regular normal subgroup, then the minimal normal subgroup M of G is a simple group of rank 3 (Higman, 1966).

Cameron (1972) worked on multiply transitive permutation groups and also studied suborbits of primitive groups.

Transitivity of the actions of various subgroups of the modular group Γ on $\widehat{\mathbb{Q}}$ have been studied through the action defined by
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y}$, for all $\frac{x}{y} \in \mathbb{Q}$ and ∞ represented as $\frac{1}{0}=\frac{-1}{0} ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$.
A study on the suborbital graph of the modular group on $\widehat{\mathbb{Q}}$ established that the action was transitive and imprimitive. It was proved that the orbit containing infinity (∞) is $\widehat{\mathbb{Q}}$, and hence transitive (Jones et al., 1991).

Properties of suborbital graphs of the normalizer of $\Gamma_{0}(N)$ on $\widehat{\mathbb{Q}}$ were examined and it was established that the action was transitive and imprimitive. It was also proved that the stabilizer of a point was an infinite cyclic group (Akbas \& Baskan, 1996).

A study on suborbital graphs of the congruence subgroup $\Gamma_{0}(N)$ on $\widehat{\mathbb{Q}}$, established that the action was not transitive and $\Gamma_{0}(p)$ was imprimitive on $\widehat{\mathbb{Q}}($ Guler et al., 2008).

Transitivity and primitivity of the dihedral group of degree $2^{r}(r \geq 2)$ were studied by Hamma and Aliyu (2010). It was shown that the group is transitive and imprimitive. However, not much has been studied on the group when the degree is not 2^{r}.

Investigations on the properties of suborbits and suborbital graphs of the symmetric group S_{n} acting on ordered r-element subsets revealed that S_{n} acts transitively on $X^{[3]}$ and that it acts imprimitively on $X^{[3]}$ provided $n>4$ (Rimberia et al., 2012b).

The action of Γ_{∞} on \mathbb{Z} and the corresponding suborbital graphs was shown to be transitive and imprimitive (Kamuti et al., 2012).

Transitivity of $\mathrm{A}_{n}(n=5,6,7,8)$ on $X^{(2)}$ and $X^{[2]}$ was established and properties of suborbital graphs for the action of $\mathrm{A}_{n}(n \geq 5)$ on $X^{(2)}$ were examined, where the non-trivial suborbital graphs were found to be connected and self-paired (Kinyanjui et al., 2013).

2.5 Summary

Several studies have been done on the actions of the subgroups of the modular group on the infinite set, $\widehat{\mathbb{Q}}$. The action of the finite group S_{n} on various sets has thoroughly been worked on. The action of the alternating group, a subgroup of S_{n}, on finite sets has also been considered. However, the dihedral and cyclic groups have not received much attention regarding the subject. This study generalizes the work on the dihedral group (Hamma and Aliyu, 2010), and also extends the investigations of the action of a cyclic subgroup of $\operatorname{PSL}(2$, q) on subsets of \mathbb{Z} (Kamuti et al., 2012)

CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

This chapter gives a description of the materials and methods that were used to realize the intended results on the stated objectives. Section 3.2 captures the criterion which the study hinges on. Section 3.3 describes the method used to compute the rank and subdegrees of each action and section 3.4 addresses the requirements on construction of suborbital graphs.

3.2 Criterion

Let G be a group acting on a finite set X. The action is an equivalence relation and therefore partitions the set into equivalence classes, G-orbits. The techniques used require the G-orbit to be exactly 1 so that the action is transitive.

3.2.1 Transitivity

For each group G acting on X and $x \in X$, the size of the stabilizer $\left|G_{x}\right|$ was first established. Definitions 1.6.6 and 1.6.7 were applicable in this. Theorem 1.6 .19 was then employed to compute the size of the orbit of $x,\left|\operatorname{orb}_{G}(x)\right|$, in each of the actions. A comparison of $\left|\operatorname{orb}_{G}(x)\right|$ and $|X|$ was used to determine transitivity of each action.

3.3 Rank and subdegrees

The fixed point set of every $\mathrm{g} \in G_{x}$ on X was first identified. Next, Theorem 1.6.20 was employed to count the number of G_{x}-orbits on X, to provide the rank of G in each of the actions. The subdegrees were determined through the action of the elements of G_{x} on X. Using the definitions of paired suborbits, the property of pairedness was established. By Theorem 1.6.17, the number of self-paired suborbits was computed in each case.

3.4 Suborbital graphs

Using the stated definitions on suborbital graphs, alongside worked examples, the study formulated the respective theorems on construction of graphs associated to each of the actions.

CHAPTER FOUR
 RESULTS AND DISCUSSION

This chapter discusses the results with reference to the stated objectives. Sections 4.1 to 4.5 has dealt with the action of the groups C_{n} and D_{n} on $X^{(r)}$, where $C_{n}=\langle g\rangle=\langle(12 \ldots n)\rangle$ and $X=\{1,2, \ldots, n\}$. Section 4.6 and 4.7 discusses what was established on the action of C_{n} and D_{n} on $X^{[r]}$. The results have been given in form of theorems that were successfully proved.

4.1 Action of the groups C_{n} and D_{n} on $X^{(r)}$

The action of any group G on $X^{(r)}$ is defined by;
$h\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}=\left\{h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{r}\right)\right\}$, for all h in G and $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ in $X^{(r)}$.

Theorem 4.1.1

The action of each of the groups, C_{n} and D_{n}, on $X^{(r)}$ is transitive if and only if $r=1, r=n-1$ or $r=n$.

Proof:

Let $G=C_{n}$ act on $X^{(r)}$ and suppose $h \in C_{n}$. Then h fixes an element in $X^{(r)}, r<n$, if and only if h is the identity. It follows, $\left|G_{\{1,2, \ldots, r\}}\right|=1$. Using Theorem 1.6.19, $\left|\operatorname{orb}_{G}\{1,2, \ldots, r\}\right|=\mid G: G_{\{1,}$, $2, \ldots, \mathrm{r}\} \mid=n$. If the action is transitive, then $\left|\operatorname{orb}_{G}(\{1,2, \ldots, r\})\right|=\left|X^{(r)}\right|, \Rightarrow n=\binom{n}{r}, \Rightarrow(n-1)!=(n-$ $r)!r!, \Rightarrow r=1$ or $r=n-1$.
Secondly, let $G=D_{n}$, act on $X^{(r)}$ and suppose $h \in D_{n}$, Then h fixes $\{1,2, \ldots, r\}$ in $X^{(r)}, r<n$, if h is the identity or h is a reflection. It follows, $\left|G_{\{1,2, \ldots, r\}}\right|=2, \Rightarrow\left|\operatorname{orb}_{G}(\{1,2, \ldots, r\})\right|=n$, by Theorem 1.6.19. If the action is transitive, then $\left|\operatorname{orb}_{G}(\{1,2, \ldots, r\})\right|=\left|X^{(r)}\right|, \Rightarrow n=\binom{n}{r}, \Rightarrow(n-$ $1)!=(n-r)!r!$. Hence, $r=1$ or $r=n-1$. Conversely, if $r=1$ or $r=(n-1)$, then $\operatorname{lorb}_{G}(\{1,2, \ldots$, $r\})\left|=\left|X^{(r)}\right|\right.$ and each of the actions is transitive.
Clearly, every $h \in G$ fixes 1 element in $X^{(n)}$. By Theorem 1.6.20, the action has 1 orbit and therefore transitive. However, the action on 1 element is trivial and the study concentrates on non-trivial actions.

Theorem 4.1.2

The rank of C_{n} on X is n and it is equal to the rank of C_{n} on $X^{(n-1)}$. The length of each suborbit is 1 in each of the actions.

Proof:

Let $G=C_{n}$ and G_{1} act on X. From Theorem 4.1.1, $h \in G_{1}$ is the identity and therefore fixes each element of X. The number of G_{1}-orbits on X is $n / 1=n$, the rank of C_{n} on X. Clearly, the size of each suborbit is 1 . The n suborbits of G on X are as follows; $\Delta_{0}=\{1\}, \Delta_{1}=\{2\}, \ldots, \Delta_{n}$ ${ }_{1}=\{n\}$, where $\Delta_{i}=\{i+1\}, i=0,1, \ldots, n-1$.

Secondly, $h \in G_{1} \Rightarrow h \in G_{\{2, \ldots, n\}}$ and therefore the $G_{\{1,2, \ldots, n-1\}}$-orbits are as follows;
$\Delta_{0}=\{1,2, \ldots, n-1\}, \Delta_{1}=\{2,3, \ldots, n-1, n\}, \ldots, \Delta_{n-1}=\{n, 1,2, \ldots, n-2\}$, where $\Delta_{i}=\{i+1, i+2, \ldots$, $i-1\}$. Clearly, the subdegrees are; $1,1, \ldots, 1$ (n ones).

Theorem 4.1.3

Let C_{n} act on X. Then suborbits Δ_{i} and Δ_{j} are paired if and only if $i+j=0 \bmod n$.

Proof:

Suppose Δ_{i} and Δ_{j} are paired suborbits of $C_{n}=\langle g\rangle=\langle 12 \ldots n\rangle$. Then there exists g^{k} in C_{n}, such that $g^{k} \Delta_{0}=\Delta_{j}$ and $g^{k} \Delta_{i}=\Delta_{0}$, from Definition 1.6.9. It follows, $1+k=j+1$ and $i+1+k=1 \bmod$ $n, \Rightarrow i+j=0 \bmod n$. Conversely, if $i+j=0 \bmod n$, then, $g^{j} \Delta_{0}=\Delta_{j}$ and $g^{j} \Delta_{i}=\Delta_{0}$. Hence, Δ_{i} and Δ_{j} are paired suborbits.

Corollary 4.1.4

Let C_{n} act on X. Then Δ_{i} is self- paired if and only if $\mathrm{i}=0$ or $\mathrm{i}=\mathrm{n} / 2 \bmod \mathrm{n}$.

Proof:

From Theorem 4.1.3, Δ_{i} is self- paired if and only if $i=j$ in the equation, $i+j=0 \bmod n$. It follows, $i=0$ or $i=n / 2 \bmod n$.

Theorem 4.1.5

The suborbits Δ_{i} and Δ_{j} are paired in the action of C_{n} on $X^{(n-1)}$ if and only if $i+j=0 \bmod n$.

Proof:

Suppose Δ_{i} and Δ_{j} are paired suborbits of C_{n}. Then there exists g^{k} in C_{n} such that $g^{k} \Delta_{0}=\Delta_{j}$ and $g^{k} \Delta_{i}=\Delta_{0}$, by definition of pairedness. It follows, $1+k=j+1$ and $i+1+k=1,2+k=j+2$ and $i+2+k=2$, $\ldots, n-1+k=j-1$ and $i-1+k=n-1 \bmod n$. Hence, $i+j=0 \bmod n$. Conversely, if $i+j=0 \bmod n$, then $g^{j} \Delta_{0}=\Delta_{j}$ and $g^{j} \Delta_{i}=\Delta_{0}$. It follows, Δ_{i} and Δ_{j} are paired.

Corollary 4.1.6

The suborbit Δ_{i} is self- paired in the ation of C_{n} on $X^{(n-1)}$ if and only if $i=0$ or $\mathrm{i}=\mathrm{n} / 2$.

Proof:

Let Δ_{i} be a self- paired suborbit of C_{n}. Then, $i=j \bmod n$, in the equation, $i+j=0$, from Theorem 4.1.5. This is possible if and only if $i=0$ or $i=n / 2 \bmod n$.

Theorem 4.1.7

The number of self- paired suborbits of C_{n} on X is 1 when n is odd and 2 when n is even.

Proof:

Let $x \in X$ and $h \in C_{n}$. When n is odd, h^{2} fixes x if h is the identity. Thus, $\sum_{h \in C_{n}}\left|F i x\left(h^{2}\right)\right|=$ n. By Theorem 1.6.17, , the number of self -paired suborbits is $\frac{1}{n}(n)=1$. This corresponds to the trivial suborbit.

When n is even, h^{2} fixes $x \in X$ if h is the identity or h is a rotation of 180°. It follows, $\sum_{h \in C_{n}}\left|F i x\left(h^{2}\right)\right|=2 n$, and the number of self- paired suborbits is $\frac{1}{n}(2 n)=2$. The selfpaired suborbits of C_{n}, in this case, are Δ_{0} and $\Delta_{n / 2}$.

Theorem 4.1.8

The number of self- paired suborbits of C_{n} acting on $X^{(n-1)}$ is 1 when n is odd and 2 when n is even.

Proof:

Let $A \in X^{(n-1)}$ and $h \in C_{n}$. Now, h^{2} fixes A if and only if h^{2} is the identity. When n is odd, this is possible only if h is the identity. Thus, $\sum_{h \in C_{n}}\left(\left|F i x\left(h^{2}\right)\right|\right)=n$. By Theorem 1.6.17, the number of self -paired suborbits is $\frac{1}{n}(n)=1$. This corresponds to the trivial suborbit.

When n is even, h^{2} fixes A if h is the identity or h is a rotation of 180°. It follows, the number of self- paired suborbits is $\frac{1}{n}(2 n)=2$. The 2 suborbits are Δ_{0} and $\Delta_{n / 2}$.

Theorem 4.1.9

The rank of D_{n} on X equals the rank of D_{n} on $X^{(n-1)}$. The rank is $\frac{n+1}{2}$ when n is odd and $\frac{n+2}{2}$ when n is even.

Proof:

Let $G=D_{n}$ and G_{1}, the stabilizer of 1 in G, act on X. From Theorem 4.1.1, $h \in G_{1}$ is either the identity or a reflection. When n is odd, the identity h fixes n elements in X and the reflection h fixes 1 element. Thus, $\sum_{h \in G_{1}} \mid$ Fix $(h) \mid=n+1$. Using Theorem 1.6.20, the number of G_{1}-orbits on X is $\frac{n+1}{2}$, the rank of D_{n} on X. Next, the identity fixes n elements in $X^{(n-1)}$. From the reflection $h \in G_{1}, h(1)=1 \Rightarrow h\{2,3, \ldots, n\}=\{2,3, \ldots, n\} \in X^{(n-1)}$. Hence, the number of $G_{\{2,3}$, $\ldots, n\}$-orbits on $X^{(n-1)}$ is $\frac{n+1}{2}$, the rank of D_{n} on $X^{(n-1)}$.

When n is even, the identity fixes n elements in X and the reflection fixes 2 elements. It follows, $\quad \sum_{h \in G_{1}}|F i x(h)|=n+2$ and the number of G_{1}-orbits on X is $\frac{n+2}{2}$. Now, $h \in G_{1}$ is such that $h(1)=1$ and $h((n+2) / 2)=(n+2) / 2, \quad \Rightarrow h\{2,3, \ldots, n\}=\{2,3, \ldots, n\} \in X^{(n-1)}$ and $h(X \mid\{(n+2) / 2\})=X \mid\{(n+2) / 2\}$. The identity h fixes $\binom{n}{n-1}=n$ elements in $X^{(n-1)}$. It follows, $\sum_{h \in G_{\{2, \ldots n\}} \mid}|F i x(h)|=n+2$ and the number of $G_{\{2,3, \ldots, n\} \text {-orbits on } X^{(n-1)} \text { is } \frac{n+2}{2} \text {, the rank of } D_{n}, ~(n)}$ on $X^{(n-1)}$.

Theorem 4.1.10

The suborbits of D_{n} on X are of the form;
$\Delta_{i}=\{i+1, n+1-i\}$, where $i=0,1, \ldots, \frac{n-1}{2}$, when n is odd, $i=0,1, \ldots, \frac{n}{2}$, when n is even.

Proof:

Let G_{1} be the stabilizer of 1 in D_{n}. When n is odd, $G_{1}=\left\{1,(2 n)(3 n-1) \ldots\left(\frac{n+1}{2} \frac{n+3}{2}\right)\right\}$. Now, $h \in G_{1}$ is such that $h x=x$ or $h x=n+2-x$ for all $x \in X$. If Δ_{i} is the G_{1}-orbit of $i+1$, then the suborbits of D_{n}
are as follows;
$\Delta_{0}=\{1\}, \Delta_{1=}\{2, n\}, \Delta_{2}=\{3, n-1\}, \ldots, \Delta_{\frac{n-1}{2}}\left\{\frac{n+1}{2}, \frac{n+3}{2}\right\}$, where $\Delta_{i}=\{i+1, n+1-i\}, i=0,1, \ldots$, $\frac{n-1}{2}$.

When n is even, $G_{1}=\left\{1,(2 n)(3 n-1) \ldots\left(\frac{n}{2} \frac{n+4}{2}\right)\right\}$. The suborbits of D_{n} are then as follows;
$\Delta_{0}=\{1\}, \Delta_{1}=\{2, n\}, \ldots, \Delta_{\frac{n}{2}}=\left\{\frac{n+2}{2}\right\}$, where $\Delta_{i}=\{i+1, n+1-i\}, i=0,1, \ldots, \frac{n}{2}$.

Theorem 4.1.11

The suborbits of D_{n} on $X^{(n-1)}$ are of the form; $\Delta_{i}=\{\{i+1, i+2, \ldots, i-1\},\{1-i, 2-i, \ldots, n-1-i\}\},\left(i=0,1, \ldots, \frac{n-1}{2}\right)$ when n is odd, and $\Delta_{i}=\{\{i+1, i+2, \ldots, i-1\},\{1-i, 2-i, \ldots, n-1-i\}\},\left(i=0,1, \ldots, \frac{n}{2}\right)$ when n is even.

Proof:

Let D_{n} act on X. When n is odd, $G_{n}=\left\{1,(1 n-1)(2 n-2) \ldots\left(\frac{n-1}{2} \frac{n+1}{2}\right)\right\}=G_{\{1,2, \ldots, n-1\}}$. The $G_{\{1,2,}$, $\ldots, n-1\}$-orbit of $A \in X^{(n-1)}$ is given by $\{A,\{n-x\} \mid x \in A\}$. If Δ_{i} is the orbit of $\{i+1, i+2, \ldots, i-1\}$, then $\Delta_{i}=\{\{i+1, i+2, \ldots, i-1\},\{1-i, 2-i, \ldots, n-1-i\}\}\left(i=0,1, \ldots, \frac{n-1}{2}\right)$.
Table 1: Subdegrees of D_{n} acting on $X^{(n-1)}$ when n is odd

Suborbit length	1	2
Number of suborbits	1	$\frac{n-1}{2}$

When n is even, the suborbits of D_{n} are then as follows;
$\Delta_{0}=\{1,2, \ldots, n-1\}, \Delta_{1}=\{\{2,3, \ldots, n\},\{n, 1, \ldots, n-2\}\}, \ldots, \Delta_{\frac{n}{2}}=\left\{\frac{n}{2}+1, \frac{n}{2}+2, \ldots, \frac{n}{2}-1\right\}$. The suborbits have the general form; $\Delta_{i}=\{\{i+1, i+2, \ldots, i-1\},\{1-i, 2-i, \ldots, n-1-i\}\}, i=0,1, \ldots, \frac{n}{2}$.

Table 2: Subdegrees of D_{n} acting on $X^{(n-1)}$ when n is even

Suborbit length	1	2
Number of suborbits	2	$\frac{n-2}{2}$

Theorem 4.1.12

The action of D_{n} on X has exactly 1 suborbit of length 1 and $(n-1) / 2$ suborbits of length 2 when n is odd. But there are 2 suborbits of length 1 and ($n-2$)/2 suborbits of length 2 when n is even.

Proof:

Let G_{1} act on X and $x \in X$. From Theorem 4.1.10, the G_{1}-orbit of x is $\{x, n+2-x\}$. The elements in a suborbit of length 1 are given by solving $2 x=2 \bmod n$. It follows, $x=1$ when n is odd. However, $x=1$ or $(n+2) / 2 \bmod n$ when n is even. The numbers of the remaining follow from Theorem 4.1.9.

Example 4.1.13

Let D_{10} act on X. The six G_{1}-orbits on X are;
$\Delta_{0}=\{1\}, \Delta_{1}=\{2,10\}, \Delta_{2}=\{3,9\}, \Delta_{3}=\{4,8\}, \Delta_{4}=\{5,7\}, \Delta_{5}=\{6\}$.

Theorem 4.1.14

The number of self-paired suborbits of D_{n} on X is $\frac{n+1}{2}$ when n is odd and $\frac{n+2}{2}$ when n is even.

Proof:

Let D_{n} act on X and $x \in X$. When n is odd, $h^{2} \in D_{n}$ fixes x if h is the identity or a reflection. From the identity, h^{2} fixes n elements in X. From each reflection, h^{2} fixes n elements. The number of elements fixed by n reflections is n^{2}. By Theorem 1.6.16, the number of selfpaired suborbits is $\frac{1}{2 n}\left(n^{2}+n\right)=\frac{n+1}{2}$.

When n is even, h^{2} fixes x in X if h is the identity, or a reflection or a rotation of 180°. The identity h^{2} fixes n elements in X, each reflection h^{2} fixes n elements in X. The n reflections fix n^{2} elements and the rotation h^{2} fixes n elements. The number of self-paired suborbits is $\frac{1}{2 n}\left(n^{2}+2 n\right)=\frac{n+2}{2}$.

Theorem 4.1.15

The number of self-paired suborbits of D_{n} on $X^{(n-1)}$ is $\frac{n+1}{2}$ when n is odd, and $\frac{n+2}{2}$ when n is even.

Proof:

From Theorem 4.1.9, $G_{1}=G_{\{2,3, \ldots, n\}}$. The action of $h \in G_{1}$ on X, induces the action of $G_{\{2,3, \ldots,}$, ${ }_{n\}}$ on $X^{(n-1)}$. The number of self-paired suborbits of D_{n} on $X^{(n-1)}$ follows from Theorem 4.1.14.

Corollary 4.1.16

All suborbits of D_{n} on X are self-paired.

Proof:

From Theorems 4.1.9 and 4.1.14, the number of suborbits equals the number of self-paired suborbits. Hence, the proof.
Corollary 4.1.17
All suborbits of D_{n} on $X^{(n-1)}$ are self-paired.
Proof:
The proof follows from Theorem 4.1.9 and Theorem 4.1.15.

Remark 4.1.18

The suborbits Δ_{i} and Δ_{n-i} of D_{n} on X are the same.

Proof:

From Theorem 4.1.10, $\Delta_{n-i}=\{n-i+1, n+1-(n-i)\}=\{n+1-i, i+1\}=\Delta_{i}$.

4.2 Suborbitals and suborbital graphs of $\boldsymbol{C}_{\boldsymbol{n}}$ acting on X

Theorem 4.2.1

Let O_{i} be the suborbital of G corresponding to Δ_{i}. Then $(c, d) \in O_{i}(1, i+1)$ if and only if $d-c=I$ $\bmod n$.

Proof:

Suppose $(c, d) \in O_{i}$. Then $(c, d)=g^{j}(1, i+1), \Rightarrow c=g^{j}(1)$ and $d=g^{j}(i+1), \Rightarrow c=1+j$ mod n and $d=i+1+j \bmod n$. Therefore, $d-c=i \bmod n$. Conversely, suppose (c, d) is such that $d-c=i \bmod n$. Then, $g^{(c-1)}(1, i+1)=(c, c+i)=(c, d)$. Therefore, $(c, d) \in O_{i}$.

4.2.1 Suborbital graphs of \boldsymbol{C}_{6} acting on X

The graph Γ_{1} has an edge from c to d if and only if $d-c=1 \bmod 6$. The graph is shown in Figure 1 below.

Figure 1: The graph Γ_{1} of C_{6} on X

Figure 2: The graph $\Gamma_{\mathbf{2}}$ of \boldsymbol{C}_{6} on X

Figure 3: The graph Γ_{3} of C_{6} on X
The graphs Γ_{4} and Γ_{5} are paired with Γ_{2} and Γ_{1} respectively.

4.2.2 Suborbital graphs of C_{7} acting on X

Figure 4: The graph Γ_{1} of C_{7} on X

Figure 5: The graph $\Gamma_{\mathbf{2}}$ of C_{7} on X

Figure 6: The graph Γ_{3} of C_{7} on X
The graphs Γ_{4}, Γ_{5} and Γ_{6} are paired with Γ_{3}, Γ_{2} and Γ_{1} respectively.

4.2.3 Suborbital graphs of C_{8} acting on X

Figure 7: The graph Γ_{1} of C_{8} on X

Figure 8: The graph Γ_{2} of C_{8} on X

Figure 9: The graph Γ_{3} of C_{8} on X

Figure 10 : The graph Γ_{4} of C_{8} on X
The graphs Γ_{5}, Γ_{6}, and Γ_{7} are paired with Γ_{3}, Γ_{2}, and Γ_{1} respectively.

4.2.4 Suborbital graphs of C_{10} on X

Figure 11: The graph Γ_{1} of C_{10} on X

Figure 12: The graph Γ_{2} of C_{10} on X

Figure 13: The graph Γ_{3} of C_{10} on X

Figure 14: The graph Γ_{4} of C_{10} on X

Figure 15: The graph Γ_{5} of C_{10} on X

The graphs $\Gamma_{6}, \Gamma_{7}, \Gamma_{8}$ and Γ_{9} are paired with $\Gamma_{4}, \Gamma_{3}, \Gamma_{2}$ and Γ_{1} respectively.

4.2.5 Properties of suborbital graphs of $\boldsymbol{C}_{\boldsymbol{n}}$ on X Theorem 4.2.2

The graph Γ_{i} is connected if and only if i and n are coprime.

Proof:

The graph Γ_{i} has an edge from c to d if and only if $d-c=i \bmod n$. The cycles of Γ_{i} correspond to the cycles of g^{i}, where $g=(12 \ldots n)$. The graph is connected only if g^{i} consists of $1, n$-cycle. From the theory of cyclic groups, this is possible if and only if i and n are coprime.

Theorem 4.2.3

The girth of the suborbital graph Γ_{i} is n / d, where d is $\operatorname{gcd}(i, n)$, provided that $i \neq n / 2$.

Proof:

The girth of the graph Γ_{i} is the smallest value of k such that $g^{k}=1$. If i and n have s common divisors, then the smallest value of $k=n / d$, where d is $\operatorname{gcd}(i, n)$. If $i=n / 2$, then g^{i} consists of $n / 2$, 2 -cycles. Thus, an edge joining exactly 2 vertices is a connected component and the graph has no cycles.

Theorem 4.2.4

The number of connected components in Γ_{i} is d, the gcd of i and n.

Proof:

From Theorem 4.2.2, the cycles of Γ_{i} correspond to the cycles of g^{i}. From the theory of cyclic groups, g^{i} consists of $d, n / d$-cycles. It follows that d is the number of connected components in Γ_{i}

Theorem 4.2.5

The suborbital graph Γ_{i} is undirected if and only if $i=n / 2$.

Proof:

Suppose Γ_{i} is undirected. Then, by Theorem 4.2.1, there is an edge from c to d and one from d to c. It follows, $d-c=i$ and $c-d=i \bmod n, \Rightarrow i=n / 2 \bmod n$. Conversely, if $i=n / 2 \bmod n$, then c $d=n / 2$ and $d-c=n-n / 2=n / 2$. Therefore, Γ_{i} is undirected.

Theorem 4.2.6

The graphs Γ_{i} and Γ_{j} are paired if and only if $i+j=0 \bmod n$.

Proof:

Suppose Γ_{i} and Γ_{j} are paired, and there is an edge from c to d in Γ_{i}. Then $c-d=i$ and $d-c=j \bmod$ n, from the definition of paired graphs. It follows, $i+j=0 \bmod n$. Conversely, if $i+j=0 \bmod n$, then the edge c to d of Γ_{i} is in the opposite direction of the edge c to d of Γ_{-i}.

Theorem 4.2.7

All non-trivial suborbital graphs corresponding to the action of C_{n} on X are directed if and only if n is odd.

Proof:

From Theorem 4.2.6, Γ_{i} is undirected if and only if $i=n / 2$. This is possible only if n is even. It follows that Γ_{i} is directed for all odd n.

Theorem 4.2.8

The action of C_{n} on X is primitive if n is prime.

Proof:

Let Γ_{i} be the graph of C_{n} on X, where n is prime. Then Γ_{i} is connected if and only if i and n are coprime, by Theorem 4.2.2. It follows, every non-trivial Γ_{i} is connected and the action is primitive by Theorem 1.6.16.

Theorem 4.2.9

The number of connected graphs Γ_{i} corresponding to the action of C_{n} on X is $\phi(n)$, the totient phi function.

Proof:

From Theorem 4.2.2, the number of connected graphs Γ_{i} is the number of positive integers less than or equal to n that are coprime to n. The number is $\phi(n)$.

4.3 Suborbitals and suborbital graphs of $\boldsymbol{C}_{\boldsymbol{n}}$ acting on $\boldsymbol{X}^{(n-1)}$

The suborbital O_{i} corresponding to suborbit Δ_{i} is the set $O_{i}=\left\{h\left(\Delta_{0}, \Delta_{i}\right) \mid h \in G\right\}$, where $\Delta_{i}=\{i+1, i+2, \ldots, i-1\}$. The suborbital graph Γ_{i} corresponding to Δ_{i} is constructed by considering $X^{(n-1)}$ as the vertices, and drawing an edge from C to D if and only if $(C, D) \in O_{i}$.

Theorem 4.3.1

Let O_{i} be the suborbital of C_{n} corresponding to Δ_{i}. Suppose (C, D) is such that c_{k} and d_{k} are the k th coordinates of C and D respectively. Then $(C, D)=\left(\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\},\left\{d_{1}, d_{2}, \ldots, d_{n-}\right.\right.$ $\left.\left.{ }_{1}\right\}\right)$ is in $O_{i}\left(\Delta_{0}, \Delta_{i}\right)$ if and only if $d_{\mathrm{k}}-c_{\mathrm{k}}=i \bmod n$, for all $k=1,2, \ldots, n-1$.

Proof:

If (C, D) is in O_{i}, then $(C, D)=g^{j}\left(\Delta_{0}, \Delta_{i}\right), \Rightarrow c_{k}=k+j$ and $d_{k}=i+k+j$. Therefore, $d_{\mathrm{k}}-c_{\mathrm{k}}=i \bmod n$. Conversely, suppose (C, D) is such that $d_{\mathrm{k}}-c_{\mathrm{k}}=i \bmod n$. Then $g^{i}\left(\Delta_{0}, \Delta_{i}\right)=(C, D), \Rightarrow(C, D) \in$ O_{i}.

4.3.1 Suborbital graphs of C_{5} on $X^{(4)}$

Figure 16: The graph Γ_{1} of C_{5} on $X^{(4)}$

$$
\{1,2,3,4\}
$$

Figure 17: The graph $\Gamma_{\mathbf{2}}$ of \boldsymbol{C}_{5} on $\boldsymbol{X}^{(\mathbf{4})}$
The graphs Γ_{3} and Γ_{4} are paired with Γ_{2} and Γ_{1} respectively.
4.3.2 Suborbital graphs of C_{8} on $X^{(7)}$

Figure 18: The graph Γ_{1} of C_{8} on $X^{(7)}$

Figure 19: The graph Γ_{2} of C_{8} on $X^{(7)}$

Figure 20: The graph Γ_{3} of C_{8} on $X^{(7)}$

Figure 21: The graph Γ_{4} of C_{8} on $X^{(7)}$

Theorem 4.3.2

If i and n are coprime, then the suborbital graph Γ_{i} corresponding to $O_{i}\left(\Delta_{0}, \Delta_{i}\right)$ is isomorphic to the graph shown in Figure 22 below.

Figure 22: The graph Γ_{i} of C_{n} on $X^{(n-1)}$ when i and n are coprime

Proof:

From Theorem 4.3.1, Γ_{i} has an edge from C to D if and only if the $k^{\text {th }}$ coordinate at D is $i \bmod$ n more than the $k^{\text {th }}$ coordinate at C. The graph is connected if i and n are coprime, from Theorem 4.2.2. It follows, the graph is as shown in Figure 22.

Theorem 4.3.3

If i and n have s common divisors, and $\operatorname{gcd}(i, n)$ is d, then Γ_{i} is isomorphic to the graph in Figure 23 below.

Figure 23: The graph Γ_{i} of C_{n} on $X^{(n-1)}$ when $\operatorname{gcd}(i, n)=d, d>1$

Proof:

From Theorem 4.3.1, Theorem 4.2.3, and Theorem 4.2.4, the graph has d connected components and girth n / d. The cycles of Γ_{i} are of the form;
$(11+i \ldots 1+(n / d-1) i)(22+i \ldots 2+(n / d-1) i) \ldots(d d+i \ldots d+(n / d-1) i)$, and the graph appears in Figure 23.

Theorem 4.3.4

If $i=n / 2$, then the graph Γ_{i} is shown in Figure 24 below.

Figure 24: The graph Γ_{i} of C_{n} on $X^{(n-1)}$ when $i=n / 2$

Proof:

From Theorem 4.3.1, Γ_{i} has cycles of the form; $(11+n / 2)(22+n / 2) \ldots(n / 2 n)$. It appears as shown in Figure 24.

Theorem 4.3.5

The action of C_{n} on X is equivalent to the action of C_{n} on $X^{(n-1)}$.

Proof:

Using Theorem 1.6.21, let (G_{1}, X) and $\left(G_{2}, X^{(n-1)}\right)$ be the action of C_{n} on X and the action of C_{n} on $X^{(n-1)}$, respectively. Let $\phi: G_{1} \rightarrow G_{2}$ such that $\phi(h)=h$, for all $h \in G_{1}$. Define $\Theta: X \rightarrow X^{(n-1)}$ such that $\Theta(x)=X \mid x$, for all $x \in X$. Now, $\Theta(h x)=X \mid h x=h(X \mid x)=\phi(h) \Theta(x)$.

The equivalence exhibited by the two actions offers facilities for determining the properties of Γ_{i}, in the action of C_{n} on $X^{(n-1)}$, through the properties of Γ_{i} in the action of C_{n} on X. Hence, the properties of Γ_{i} in the action of C_{n} on $X^{(n-1)}$ follow from Section 4.2.5.

4.4 Suborbitals and suborbital graphs of D_{n} acting on X Theorem 4.4.1

Suppose O_{i} is the suborbital corresponding to Δ_{i}. Then $(c, d) \in O_{i}(1, i+1)$ if and only if $d-c=i \bmod n$ or $d-c=n-i \bmod n$.

Proof:

If $(c, d) \in O_{i}$, then $(c, d)=h g^{j}(1, i+1)$, where $h(c, d)=(d, c)$ and $g=(12 \ldots n)$. Now, $(c, d)=(1+j$, $i+1+j)$ or $(i+1+j, 1+j) \Rightarrow d-c=i \bmod n$ or $n-i \bmod n$. Conversely, if $d-c=i \bmod n$ or $d-c=n-i$ $\bmod n$, then $g^{(c-1)}(1, i+1)=(c, d)$. Since Δ_{i} is self-paired, there exists h in D_{n} such that $h(c$, $d)=(d, c), \Rightarrow(c, d) \in O_{i}$.

4.4.1 Suborbital graphs of D_{6} on X

Figure 25: The graph Γ_{1} of D_{6} on X

Figure 26: The graph $\Gamma_{\mathbf{2}}$ of D_{6} on X

Figure 27: The graph Γ_{3} of D_{6} on X
4.4.2 Suborbital graphs of D_{7} acting on X

1

Figure 28: The graph Γ_{1} of D_{7} on X

Figure 29: The graph Γ_{2} of D_{7} on X

Figure 30: The graph Γ_{3} of D_{7} on X

4.4.3 Suborbital graphs of D_{8} acting on X

Figure 31: The graph Γ_{1} of D_{8} on X

Figure 32: The graph Γ_{2} of D_{8} on X

Figure 33: The graph Γ_{3} of D_{8} on X

Figure 34: The graph Γ_{4} of D_{8} on X

4.4.4 Suborbital graphs of D_{10} on X

Figure 35: The graph Γ_{1} of D_{10} on X

Figure 36: The graph Γ_{2} of D_{10} on X

Figure 37: The graph Γ_{3} of D_{10} on X

Figure 38: The graph Γ_{4} of D_{10} on X

Figure 39: The graph Γ_{5} of D_{10} on X

4.4.5 Properties of suborbital graphs of D_{n} acting on X Theorem 4.4.2

All non-trivial suborbital graphs of D_{n} on X are undirected.

Proof:

Let Δ_{i} be the suborbit corresponding to the graph $\Gamma_{i .}$ From Corollary 4.1.16, Δ_{i} is self-paired. From Definition 1.6.15, $\Gamma_{i .}$ is undirected.

Theorem 4.4.3

The girth of the graph Γ_{i} of D_{n} on X is n / d, where d is $\operatorname{gcd}(i, n)$, provided $i \neq n / 2$.

Proof:

Let Γ_{i} be a suborbital graph of D_{n} on X. From Theorem 4.4.1, the girth of Γ_{i} is the smallest integer k such that $1=1+k i \bmod n, 2=2+k i \bmod n, \ldots, l=l+k i \bmod n$. From the theory of cyclic groups, $k=n / d$, where d is $\operatorname{gcd}(i, n)$. If $i=n / 2$, then Γ_{i} has a path joining exactly 2 vertices and the graph has no cycles.

Theorem 4.4.4

The graph Γ_{i} of D_{n} on X has d connected components, where d is $\operatorname{gcd}(i, n)$.

Proof:

From Theorem 4.4.3, there is a path in Γ_{i} from x to y if and only $x \equiv y$ mod d. A complete residue system modulo d has d congruent classes, which are; $0,1,2, \ldots, d-1$.

Theorem 4.4.5

The graph Γ_{i} of D_{n} on X is connected if and only if i and n are coprime.

Proof:

From Theorem 4.4.4, Γ_{i} is connected if and only if $d=1$. This is possible only if i and n are coprime.

Theorem 4.4.6

The action of D_{n} on X is primitive if n is prime.

Proof:

Let Γ_{i} be a graph of D_{n} on X, where n is prime. Then, i and n are coprime, $1 \leq i \leq n$. From Theorem 4.4.5, the graph is connected. From Theorem 1.6.16, the action is primitive.

Theorem 4.4.7

The number of connected graphs Γ_{i} corresponding to the action of D_{n} on X is $1 / 2(\phi(n))$, where $\phi(n)$ is the totient phi function.

Proof:

From Theorem 4.4.5, Γ_{i} is connected if and only if i is relatively prime to n. The number of integers, less than or equal to n, that are relatively prime to n is $\phi(n)$. From Remark 4.1.18, Δ_{i} and Δ_{n-i} are the same suborbits. It follows, the number of connected graphs is $1 / 2(\phi(n))$.

Theorem 4.4.8

The graph Γ_{i} of D_{n} on X when $\operatorname{gcd}(i, n)=d, d>1$, has d connected components and each component has girth n / d.

Proof:

Let Γ_{i} be a graph of D_{n} on X, where $\operatorname{gcd}(i, n)=d, d>1$. From Theorems 4.4.3 and 4.4.4, Γ_{i} has $d, n / d$-cycles as shown in Figure 40.

Figure 40: The graph ri of Dn on X when gcd (i, n) $=d, d>1$

Theorem 4.4.9

The graph Γ_{i} has 1 connected component when i and n are coprime.

Proof:

From Theorems 4.4.3 and 4.4.4, Γ_{i} has d cycles, each of girth n / d. When i and n are coprime, $d=1$. It follows Γ_{i} has 1 cycle of length n as shown in Figure 41.

Figure 41: The graph Γ_{i} of D_{n} on X when i and n are coprime
Theorem 4.4.10

The graph Γ_{i} has no cycles when $i=n / 2$.

Proof:

From Theorem 4.4.3, if $i=n / 2$, then a path in Γ_{i} joins exactly 2 vertices. The graph is shown in Figure 42.

Figure 42: The graph Γ_{i} of D_{n} on X when $i=n / 2$

4.5 Suborbitals and suborbital graphs of $D_{\boldsymbol{n}}$ acting on $X^{(n-1)}$

The suborbital O_{i} corresponding to suborbit Δ_{i} is the set $O_{i}=\left\{g\left(\Delta_{0}, A_{i}\right) \mid g \in G\right\}$, where $A_{i} \in$ $\Delta_{i}=\{\{i+1, i+2, \ldots, i-1\},\{1-i, 2-i, \ldots, n-1-i\}\}$. The suborbital graph Γ_{i} corresponding to Δ_{i} is constructed by considering $X^{(n-1)}$ as the vertices, and drawing an edge from C to D if and only if $(C, D) \in O_{i}$.

Theorem 4.5.1

Suppose O_{i} is the suborbital corresponding to Δ_{i} and $A_{i}=\{i+1, i+2, \ldots, i-1\} \in \Delta_{i}$. Then the pair $(C, D)=\left(\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\},\left\{d_{1}, d_{2}, \ldots, d_{n-1}\right\}\right) \in O_{i}\left(\Delta_{0}, A_{i}\right)$ if and only if $d_{k}-c_{k}=i \bmod n$ or $d_{k^{-}}$ $c_{k}=n-i \bmod n k=1,2, \ldots, n-1$.

Proof:

If $(C, D) \in O_{i}\left(\Delta_{0}, A_{i}\right)$, then $\left[c_{1}, d_{1}\right]=h g^{j}[1, i+1]=[1+j, i+1+j]$ or $[i+1+j, 1+j], \Rightarrow d_{1}-c_{1}=i \bmod$ n or n - $i \bmod n$. Since the coordinates of C and D are consecutive integers $\bmod n, d_{k}-c_{k}=i \bmod$ n or $d_{k}-c_{k}=n-i \bmod n, k=1,2, \ldots, n-1$. Conversely, if $d_{k}-c_{k}=i \bmod n$, then $d_{k}=c_{k}+i$ and $h g^{(c k-k)}$ $(k, i+k)=h\left(c_{k}, d_{k}\right)=\left(d_{k}, c_{k}\right), \Rightarrow(C, D) \in O_{i}$

4.5.1 Suborbital graphs of D_{6} acting on $X^{(5)}$

$\{1,2,3,4,5\}$
$\{6,1,2,3,4\}$

$$
\{5,6,1,2,3\}
$$

$\{2,3,4,5,6\}$
$\{4,5,6,1,2\}$

Figure 43: The graph Γ_{1} of D_{6} on $X^{(5)}$

Figure 44: The graph Γ_{2} of D_{6} on $X^{(5)}$

Figure 45: The graph Γ_{3} of D_{6} on $X^{(5)}$
4.5.2 Suborbital graphs of D_{7} acting on $X^{(\boldsymbol{6})}$

Figure 46: The graph Γ_{1} of D_{7} on $X^{(6)}$

$\{5,6,7,1,2,3\}$

Figure 47: The graph Γ_{2} of D_{7} on $X^{(\boldsymbol{6})}$

Figure 48: The graph Γ_{3} of D_{7} on $X^{(\boldsymbol{6})}$
4.5.3 Suborbital graphs of D_{8} acting on $X^{(7)}$

Figure 49: The graph Γ_{1} of D_{8} on $X^{(7)}$

Figure 50: The graph Γ_{2} of D_{8} on $X^{(7)}$

$$
\{8,1,2,3,4,5,6\}
$$

$$
\{1,2,3,4,5,6,7\}
$$

$\{7812345\}$
$\{6781234\}$

$\{2,3,4,5,6,7,8\}$
$\{5,6,7,8,1,2,3\}$
$\{4,5,6,7,8,1,2\}$

Figure 51: The graph Γ_{3} of D_{8} on $X^{(7)}$

Figure 52: The graph Γ_{4} of D_{8} on $X^{(7)}$

Theorem 4.5.2

The action of D_{n} on X is equivalent to the action of D_{n} on $X^{(n-1)}$.

Proof:

Using Definition 1.6.21, let $\left(G_{1}, X\right)$ and $\left(G_{2}, X^{(n-1)}\right)$ be the action of D_{n} on X and the action of D_{n} on $X^{(n-1)}$, respectively. Define $\phi: G_{1} \rightarrow G_{2}$ such that $\phi(g)=g$, for all $g \in G_{1}$. Define $\Theta: X \rightarrow$ $X^{(n-1)}$ such that $\Theta(x)=X \mid x$, for all $x \in X$. Now, $\Theta(g x)=X \mid g x=g(X \mid x)=\phi(g) \Theta(x)$.

Theorem 4.5.3

If i and n are coprime, then the graph Γ_{i} is connected. The graph is isomorphic to Γ_{i} shown in Figure 53 below.

Figure 53: The graph Γ_{i} of D_{n} on $X^{(n-1)}$ when i and n are coprime

Proof:

From Theorem 4.5.2, the properties of suborbital graphs of D_{n} on X are the same as those of D_{n} on $X^{(n-1)}$. It follows, the graph takes the same form as Γ_{i} in Figure 41. Hence, the proof.

Theorem 4.5.4

If $i=n / 2$, then the graph Γ_{i} is of the form shown in Figure 54 below.

Figure 54: The graph Γ_{i} of D_{n} on $X^{(n-1)}$ when $i=n / 2$

Proof:

From Theorem 4.5.2, Γ_{i} is of the same form as Γ_{i} in Figure 42. The graph appears as shown in Figure 54.

Theorem 4.5.5

If i and n have s common divisors in which $\operatorname{gcd}(i, n)=d$, then the graph Γ_{i} has d connected components. The graph is shown in Figure 55 below.

Figure 55: The $\operatorname{graph} \mathrm{r}_{i}$ of D_{n} on $X^{(n-1)}$ when $\operatorname{gcd}(i, n)=d, d>1$

Proof:

From Theorem 4.5.2, and from Figure 40, Γ_{i} is of the form shown in Figure 55.

4.6 Action of $\boldsymbol{C}_{\boldsymbol{n}}$ on $\boldsymbol{X}^{[r]}$

The set $X^{[r]}$ comprises of all ordered r-element subsets of the set $X=\{1,2, \ldots, n\}$ and its cardinality is ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$. The action of a group G on $X^{[r]}$ is defined by; $g\left[x_{1}, x_{2}, \ldots\right.$, $\left.x_{r}\right]=\left[g\left(x_{1}\right), g\left(x_{2}\right), \ldots, g\left(x_{r}\right)\right]$, for all $\left[x_{1}, x_{2}, \ldots, x_{r}\right] \in X^{[r]}, g \in G$.

Theorem 4.6.1

The action of C_{n} on $X^{[r]}$ is transitive if and only if $r=1$ or $n=r=2$.

Proof:

Let $G=C_{n},\left[x_{1}, x_{2}, \ldots, x_{r}\right] \in X^{[r]}$ and g in G. Now, g fixes any element $\left[x_{1}, x_{2}, \ldots, x_{\mathrm{r}}\right]$ in $X^{[r]}$ if and only if $g\left[x_{1}, x_{2}, \ldots, x_{r}\right]=\left[x_{1}, x_{2}, \ldots, x_{r}\right]$ so that $g\left(x_{1}\right)=x_{1}, g\left(x_{2}\right)=x_{2}, \ldots, g\left(x_{r}\right)=x_{r}$. This is possible if and only if g is the identity. The number of elements in $X^{[r]}$ fixed by the identity is ${ }^{n} \mathrm{P} r$. Using Cauchy-Frobenius Lemma, the number of G-orbits on $X^{[r]}$ is;

$$
\begin{aligned}
\frac{1}{n}\left\{\frac{n!}{(n-r)!}\right\} & =\frac{(n-1)!}{(n-r)!} \\
& =1 \text { if and only if } r=1, n \geq 1 \text { or } n=r=2 . \text { But } r>1 \text { for ordered elements. }
\end{aligned}
$$

Theorem 4.6.2

The rank of C_{2} on $X^{[2]}$ is 2 and the subdegrees are; 1,1 .

Proof:

Let $G=C_{2}$ and $[1,2] \in X^{[2]}$. Since $\left|G_{[1,2]}\right|=1$, then $G_{[1,2]}$ is the trivial subgroup of G. It follows that g in $G_{[1,2]}$ fixes each element of $X^{[2]}$ in its own orbit. Hence, the rank of G on $X^{[2]}$ is 2 and the subdegrees are; 1,1 .The 2 suborbits of G are; $\Delta_{0}=[1,2]$ and $\Delta_{1}=[2,1]$, are self-paired.

4.6.1 Suborbital graph of C_{2} on $X^{[2]}$

Let suborbital $O_{1}=\{g[[1,2],[2,1]] \mid g \in G\}$. Then the 2 elements of $X^{[2]}$ in this suborbital are; ([1, 2], [2, 1]). The corresponding suborbital graph is shown in Figure 56 below.

$[1,2]$ [2.1]

Figure 56: The graph r_{i} of \boldsymbol{C}_{2} on $X^{[2]}$
The graph is undirected with 1 connected component.
The action has only 1 non-trivial suborbit corresponding to 1 graph and thereby offering little to discuss.

4.7 Ranks, subdegrees and suborbital graphs of $D_{\boldsymbol{n}}$ on $X^{[r]}$

Theorem 4.7.1

The action of D_{n} on $X^{[r]}$ is transitive if and only if $n=3$ and $r \leq 3$.

Proof:

Let $g \in G=D_{n}$ and $[1,2, \ldots, r] \in X^{[r]}$. Now, g fixes an ordered r-element subset if and only if g is the identity. Then $\left|G_{[1,2, \ldots, r]}\right|=1$ and by Theorem 1.6.19, $\left|\operatorname{orb}_{G}[1,2, \ldots, r]\right|=|G| / 1=2 n$. For
transitivity, $\left|X^{[r]}\right|=2 n, \Rightarrow\left(\frac{n!}{(n-r)!}\right)=2 n, \Rightarrow n=3$ and $r \leq 3$. Conversely, if $n=3$ and $r \leq 3$, then $\left|X^{[r]}\right|=2 n$ and the action is transitive.

Theorem 4.7.2

The rank of $G=D_{3}$ on $X^{[r]}$ is 6 and each suborbit contains 1 element.

Proof:

Let the group $G_{[1,2, \ldots, r]}$ act on $X^{[r]}$ and $[1,2, \ldots, r] \in X^{[r]}$. From Theorem 4.7.1, g in $G_{[1,2, \ldots,}$, ${ }_{r]}$ fixes each element of $X^{[r]}$ in its own $G_{[1,2, \ldots, r]}$ orbit. Since $\left|X^{[r]}\right|=6$ then the rank of G on $X^{[r]}$ is 6 .

Clearly, the subdegrees of G are; $1,1,1,1,1,1$.
The 6 suborbits of G on $X^{[3]}$ are;
$\Delta_{0}=\{[1,2,3]\}, \Delta_{1}=\{[1,3,2]\}, \Delta_{2}=\{[3,2,1]\}, \Delta_{3}=\{[2,1,3]\}, \Delta_{4}=\{[2,3,1]\}, \Delta_{5}=\{[3,1,2]\}$.

Theorem 4.7.3

The number of self- paired suborbits of D_{3} on $X^{[3]}$ is 4 .

Proof:

Let $G=D_{3}$ act on $X^{[3]}$. Now, g^{2} fixes an ordered set of r elements if g is the identity or g is a reflection. If g is the identity, then $\left|\operatorname{Fix}\left(g^{2}\right)\right|={ }^{3} \mathrm{P},=6$. If g is a reflection, then $\left|F i x\left(g^{2}\right)\right|={ }^{3} \mathrm{P}_{r}=6$. Using Theorem 1.6.17, the number of self-paired suborbits is $\left.\frac{1}{\left|D_{3}\right|} \sum_{\mathrm{g} \in D_{3}} \right\rvert\,$ Fix $\left(\mathrm{g}^{2}\right) \left\lvert\,=\frac{1}{6}\{6+3(6)\}=4\right.$.
The 4 self- paired suborbits of D_{3} on $X^{[2]}$ are; $\Delta_{0}=[1,2], \Delta_{1}=[1,3], \Delta_{2}=[3,2]$ and $\Delta_{3}=[2,1]$. By definition of sef-pairedness, $g\left[\Delta_{0}, \Delta_{1}\right]=\left[\Delta_{1}, \Delta_{0}\right]$ when $g=(23), g\left[\Delta_{0}, \Delta_{2}\right]=\left[\Delta_{2}, \Delta_{0}\right]$ when $g=(13)$ and $g\left[\Delta_{0}, \Delta_{3}\right]=\left[\Delta_{3}, \Delta_{0}\right]$ when $g=(12)$.
The 4 self- paired suborbits of D_{3} on $X^{[3]}$ are; $\Delta_{0}=[1,2,3], \Delta_{1}=[1,3,2], \Delta_{2}=[3,2,1], \Delta_{3}=[2,1$, 3]. Clearly, $g\left[\Delta_{0}, \Delta_{1}\right]=\left[\Delta_{1}, \Delta_{0}\right]$ when $g=(23), g\left[\Delta_{0}, \Delta_{2}\right]=\left[\Delta_{2}, \Delta_{0}\right]$ when $g=(13)$ and $g\left[\Delta_{0}\right.$, $\left.\Delta_{3}\right]=\left[\Delta_{3}, \Delta_{0}\right]$ when $g=(12)$.

4.7.1 Suborbitals and suborbital graphs of $G=D_{3}$ acting on $X^{[r]}$

Let $\Delta=\left[x_{1}, \ldots, x_{r}\right]$ be a suborbit of G on $X^{[r]}$, where $x_{i} \in\{1,2, \ldots, n\}$. Then the suborbital O corresponding to Δ is given by; $O=\left\{\left(g[1,2, \ldots, r], g\left[x_{1}, x_{2}, \ldots, x_{r}\right]\right) \mid g \in G,\left[x_{1}, x_{2}, \ldots, x_{r}\right] \in\right.$ $\Delta\}$. The graph Γ corresponding to suborbital O is formed by considering $X^{[r]}$ as the vertex set and drawing an edge from $\left[c_{1}, c_{2}, \ldots, c_{r}\right]$ to $\left[d_{1}, d_{2}, \ldots, d_{r}\right]$ if and only if $\left(\left[c_{1}, c_{2}, \ldots, c_{r}\right],\left[d_{1}\right.\right.$, $\left.\left.d_{2}, \ldots, d_{r}\right]\right) \in O$. Now, the suborbital graph corresponding to a self-paired suborbit Δ_{i} has an
edge from $C=\left[c_{1}, c_{2}, \ldots, c_{r}\right]$ to $D=\left[d_{1}, d_{2}, \ldots, d_{r}\right]$ only if $|C \cap D|=1$. The graph corresponding to a paired suborbit Δ_{i} has an edge from $C=\left[c_{1}, c_{2}, \ldots, c_{r}\right]$ to $D=\left[d_{1}, d_{2}, \ldots, d_{r}\right]$ only if $|C \cap D|=0$.

Theorem 4.7.4

Let O_{i} be the suborbital corresponding to a self-paired suborbit Δ_{i} of D_{3}. Then $(C, D) \in O_{i}\left(\Delta_{0}\right.$,
Δ_{i}) if and only if the $k^{\text {th }}$ coordinate of C is identical to the $k^{\text {th }}$ coordinate of D.

Proof:

If $(C, D) \in O_{i}\left(\Delta_{0}, \Delta_{i}\right)$, then $(C, D)=g\left(\Delta_{0}, \Delta_{i}\right)=\left(\Delta_{i}, \Delta_{0}\right)$. Now, $D=[1,2,3]$ and $C=g \Delta_{0}$, where g fixes either 1 , or 2 or 3 in D. It follows, the $k^{\text {th }}$ coordinate of C is identical to the $k^{\text {th }}$ coordinate of D. Conversely, if the $k^{t h}$ coordinate of C is identical to the $k^{t h}$ coordinate of D, then $g(C, D)=(D, C)$ and therefore, $(C, D) \in O_{i}\left(\Delta_{0}, \Delta_{i}\right)$.

Theorem 4.7.5

Let O_{i} be the suborbital corresponding to a paired suborbit Δ_{i} of D_{3}. Then $(C, D) \in O_{i}\left(\Delta_{0}, \Delta_{i}\right)$, if and only if and the $k^{\text {th }}$ coordinate of D is $j \bmod 3$ more than the $k^{\text {th }}$ coordinate of C, where $g^{j} \Delta_{0}=\Delta_{i}$.

Proof:

Suppose Δ_{i} is a paired suborbit of G and $(C, D) \in O_{i}\left(\Delta_{0}, \Delta_{i}\right)$. Then $(C, D)=g^{j}\left(\Delta_{0}, \Delta_{i}\right)$, and (D, $C)=g^{-j}\left(\Delta_{0}, \Delta_{i}\right)$. Now, $C=[1+j, 2+j, 3+j]$ and $D=[1-j, 2-j, 3-j]$. Clearly, the coordinate at D differs with the one at C by j mod 3 . Conversely, if the coordinates in (C, D), differ by j, then $(C, D)=g^{j}\left(\Delta_{0}, \Delta_{i}\right)$ and therefore $(C, D) \in O_{i}\left(\Delta_{0}, \Delta_{i}\right)$.
4.7.2 Suborbital graphs of $\boldsymbol{D}_{\mathbf{3}}$ on $\boldsymbol{X}^{[2]}$

$$
\begin{equation*}
[1,2] \tag{1,3}
\end{equation*}
$$

Figure 57: The graph Γ_{1} of D_{3} on $X^{[2]}$

Figure 58: The graph Γ_{2} of D_{3} on $X^{[2]}$

Figure 59: The graph Γ_{3} of D_{3} on $X^{[2]}$

Figure 60: The graph Γ_{4} of D_{3} on $X^{[2]}$
The graph Γ_{5} is paired with Γ_{4} as the respective suborbits are paired.

4.7.3 Suborbital graphs of D_{3} on $X^{[3]}$

$[2,1,3]$

[2, 3, 1]

[1, 3, 2]
$[3,1,2]$
$[3,2,1]$

Figure 61: The graph Γ_{1} of D_{3} on $X^{[3]}$

Figure 62: The graph Γ_{2} of D_{3} on $X^{[3]}$
[2, 1, 3]

[1, 2, 3]
[2, 3, 1]
$[3,2,1]$

[3, 1, 2]

Figure 63: The graph Γ_{3} of D_{3} on $X^{[3]}$

Figure 64: The graph Γ_{4} of D_{3} on $X^{[3]}$
The graph Γ_{5} is paired with Γ_{4}.

4.7.4 Properties of suborbital graphs of D_{3} on $X^{[r]}$

Theorem 4.7.6

All suborbital graphs of D_{3} on $X^{[r]}$ are disconnected.

Proof:

Clearly, all the graphs have been constructed and they are all disconnected.

Theorem 4.7.7

The action of D_{3} on $X^{[r]}$ is imprimitive.

Proof:

Suppose Γ_{i} corresponds to suborbit, Δ_{i}, of D_{3} on $X^{[3]}$. Then, from Theorem 4.7.6, the graph is disconnected. From Theorem 1.6.16, the action of D_{3} on $X^{[r]}$ is imprimitive.

Theorem 4.7.8

The number of connected components of Γ_{i} corresponding to a self-paired Δ_{i} is 3 , while the number of those corresponding to a paired Δ_{i} is 2 .

Proof:

Clearly, the proof follows from the graphs and corresponding suborbits by exhaustive method.

4.8 Rank, suborbits and suborbital graphs of $H=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$ on \mathbb{Z}_{p}

4.8.1 Action of $H=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$ on $\mathbb{Z}_{\mathbf{p}}$

The group H has elements of the form

$$
\left.\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right) \right\rvert\, h \in \mathbb{Z}_{\mathbf{p}} .
$$

The action of H on $X=\mathbb{Z}_{\mathbf{p}}$ is defined by

$$
\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right):\binom{x}{1} \rightarrow\binom{x+h}{1}, \text { for all } x \in X
$$

Theorem 4.8.1

The action of H on $\mathbb{Z}_{\mathbf{p}}$ is transitive.

Proof:

Let H act on $X=\mathbb{Z}_{\mathbf{p}}, x \in X$, and $\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \in H$. The stabilizer of x in H is the identity in H, since $\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\binom{x}{1}=\binom{x+h}{1}, \Rightarrow \quad\{x+h \mid h \in X\}=\{x\}$ only if $h=0$. By Theorem 1.6.19, $\operatorname{lorb}_{\mathrm{H}}$ $(x)|=|H| / 1=p=|X|$ and the action is transitive.

Theorem 4.8.2

The rank of H on X is p and the length of each suborbit is 1 .

Proof:

Let H_{0} act on X. From Theorem 4.8.1 H_{0}, the identity in H_{0} fixes each element of X in its own orbit. The number of H_{0}-orbits on X is $p / 1=p$, the rank of H on X. Clearly, the length of each suborbit is 1 and the subdegrees are; $1,1, \ldots, 1$ (p ones). The p suborbits of H are;
$\Delta_{0}=\{0\}, \Delta_{1}=\{1\}, \ldots, \Delta_{p-1}$, where $\Delta_{i}=\{i\}$.

Theorem 4.8.3

Let H act on X. Then Δ_{i} and Δ_{j} are paired if and only if $i+j \equiv 0 \bmod p$.

Proof:

Suppose Δ_{i} and Δ_{j} are paired suborbits of H. Then there exists h in X such that $i+h=0 \bmod p$ and $h=j \bmod p$, from the definition of pairedness. It follows, $i+j \equiv 0 \bmod p$. Conversely, if $i+j \equiv 0 \bmod p$, then Δ_{i} and Δ_{j} are paired when $h=j \bmod p$.

Corollary 4.8.4

Let H act on X. Then Δ_{i} is self- paired if and only if $i=0 \bmod p$.

Proof:

From Theorem 4.8.3, Δ_{i} is self- paired if and only if $i=j$ in the equation, $i+j \equiv 0 \bmod p$. It follows, $2 i=0 \bmod p, \Rightarrow i=0 \bmod p$.

Corollary 4.8.5

All the non-trivial suborbits of H on X are paired.

Proof:

From Corollary 4.8.4, Δ_{i} is self- paired only if $i=0$. It follows, all non-trivial suborbits are paired.

Example 4.8.5

Suppose $X=\mathbb{Z}_{11}=\{0,1, \ldots, 10\}$. If $x \in X$ and $H=\left\{\left.\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \right\rvert\, h \in X\right\}$, then the stabilizer of x in H is the identity in $H, H_{x}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. The 11 suborbits of H on X are; $\Delta_{0}=\{0\}, \Delta_{1}=\{1\}, \ldots$, $\Delta_{10}=\{10\}$. To obtain Δ_{i}^{*}, solve for j in $j+i=0 \bmod p$. It follows, $j=p-i \bmod p$. Hence, $\Delta_{i}{ }^{*}=\Delta_{p-i}$.

4.8.2 Suborbitals and suborbital graphs of \boldsymbol{H} acting on $X=\mathbb{Z}_{p}$

Let H act on X. The suborbital corresponding to Δ_{i} is the set $O_{i}=\{(h, i+h) \mid h \in X$. The corresponding suborbital graph Γ_{i} has an edge from x to y if and only if $(x, y) \in O_{i}$.

Theorem 4.8.6

For any two elements, x and y, in X, the ordered pair $(x, y) \in O_{i}$ if and only if y - $x \equiv i \bmod p$.

Proof:

Let $\left.H=\left\{\left.\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \right\rvert\, h \in X\right)\right\}$ act on X, and suppose Δ_{i} corresponds to O_{i}. If (x, y) is in O_{i}, then $(x$, $y)=(h, i+h) \bmod p$. It follows, $y-x \equiv i \bmod p$. Conversely, if $y-x \equiv i \bmod p$, then $y \equiv x+i \bmod$ p and $(x, x+i)$ is in O_{i}.

Theorem 4.8.7

Let H act on X. The graph Γ_{i} is paired with Γ_{j} if and only if $i+j \equiv 0 \bmod p$.

Proof:

Suppose Δ_{i} and Δ_{j} are paired suborbits of H, corresponding to Γ_{i} and Γ_{j} respectively. Then the proof follows from Theorem 4.8.3.

Theorem 4.8.8

The graph Γ_{i} is undirected if and only if $i \equiv 0 \bmod p$.

Proof:

From Theorem 4.8.7, Γ_{i} is undirected if $i=j$ in the equation if $i+j \equiv 0 \bmod p$. Hence, $i \equiv 0 \bmod$ p.

Theorem 4.8.9

The girth of Γ_{i} is p for all $i>0$.

Proof:

From Theorem 4.8.6, Γ_{i} has edges of the form, $0 \rightarrow i \rightarrow 2 i \rightarrow \ldots \rightarrow k i, 1 \rightarrow 1+i \rightarrow 1+2 i \rightarrow$ $\ldots 1+m i, \ldots$

The length of the shortest cycle of Γ_{i} is the smallest positive integer k such that $k i=0 \bmod p$. It follows, $k=p$.

Theorem 4.8.10

The graph Γ_{i} is connected for all $i>0$.

Proof:

From Theorem 4.8.9, there is a path joining any two vertices of Γ_{i}. The graph is connected from Definition 1.6.12.

Theorem 4.8.11

The action of H on X is primitive.

Proof:

From Theorem 4.8.10, Γ_{i} is connected. The action is primitive by Theorem1.6.16.

Theorem 4.8.12

The graph Γ_{i} is isomorphic to the graph shown in Figure 65.

Proof:

From Theorem 4.8.9 and Theorem 4.8,10, Γ_{i} is of the form shown in Figure 65.

Figure 65: The graph Γ_{i} of H on \mathbb{Z}_{p}

CHAPTER FIVE CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The study intended to compute the ranks, subdegrees and suborbital graphs of the actions of C_{n}, D_{n}, and H on finite sets. This was achieved, in line with the stated objectives, by using applicable theory in the area.

Transitivity was determined where each of the actions of D_{n} and C_{n} on $X^{(r)}$ is transitive if and only if $r=1, r=n-1$ or $r=n$. However, the action of D_{n} on $X^{[r]}$ is transitive only if $n=3$ and $r \leq 3$, whereas that of C_{n} on $X^{[r]}$ is transitive if and only if $r=1$ or $n=r=2$. The action of $H=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$ on $\mathbb{Z}_{\mathbf{p}}$ has also been found to be transitive.

The rank of C_{n} on X was proved to be n, and equal to the rank of C_{n} on $X^{(n-1)}$. Consequently, the subdegrees of each of the actions have been shown to be; $1,1, \ldots, 1$ (n ones). Similarly, it has been proved that the rank of D_{n} on X is equal to the rank of D_{n} on $X^{(n-1)}$ and each of them is $(n+1) / 2$ when n is odd, and $(n+2) / 2$ when n is even. In each of the actions of D_{n}, there was 1 suborbit of length 1 and ($n-1$)/2 suborbits of length 2 when n is odd. But there were 2 suborbits of length 1 and ($n-2$)/2 suborbits of length 2 when n is even. On the other hand, the rank of D_{3} on $X^{[3]}$ and on $X^{[2]}$ was found to be 6 , while that of C_{2} on $X^{[2]}$ was 2.The rank of H on $\mathbb{Z}_{\mathbf{p}}$ has been shown to be p and the subdegrees are; $1,1, \ldots, 1$ (p ones).

All non-trivial suborbits of the action of D_{n}, on X were self-paired. But only 1 non-trivial suborbit of the action of C_{n} on X was self-paired, when n is even. The action of H on $\mathbb{Z}_{\mathbf{p}}$ has no non-trivial self-paired suborbits. These results are verified by Theorem 1.6.16.

From each of the actions of D_{n} and C_{n} on X, the graph Γ_{i} had $d, n / d$ cycles, where $d=\operatorname{gcd}(i, n)$. This resulted to 3 graphs, one of which was connected and the other 2 were disconnected. From the 2 disconnected, 1 of them had cycles and the other had no cycles (see Figures 40, 41 and 42 and Theorem 4.3 .5 respectively). The graphs of D_{n} and C_{n} on $X^{(n-1)}$ followed the same generalization of the 3 graphs ((see Figures 53, 54 and 55) and (Figures 22, 23 and 24) respectively). However, the graph of H on $\mathbb{Z}_{\mathbf{p}}$ was only 1 which is connected (see Figure 65).

From the actions of D_{n} and C_{n}, it has been established that the corresponding graph is connected only if n is prime. This result implies that the respective groups are primitive only if n is prime.

5.2 Recommendations, application and further research

The action of G on X induces the action of G on $X^{(n-1)}$ from each of the groups, D_{n} and C_{n}. The equivalence exhibited by the action of G on X and that of G on $X^{(n-1)}$, offers a facility to study the action of G on $X^{(n-1)}$ through the action of G on X. The result is also applicable in Category theory in mapping of sets to elements. The results on primitive actions can be used to investigate primitivity of the groups on various sets of cardinality p. Further research could be done on the action of the groups on diagonals of a regular polygon.

The study conjectures that the action of $H=<\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)>$ on $\mathbb{Z}_{\mathbf{p}}$ is equivalent to that of C_{n} on X if $n=p$.

REFERENCES

Akbas, M. (2001). On Suborbital graphs for the modular group. Bulletin of the London Mathematical Society, 33, 647-652.

Akbas, M., \& Baskan, T. (1996). Suborbital Graphs for the normalizer of $\Gamma_{0}(\mathrm{~N})$. Tr.: . Journal of mathematics 20, 379-387.

Bon, J. V., \& Cohen, A. M. (1989). Linear groups and distance-transitive graphs. European Journal of Combinatorics 10, 399-411.

Cameron, P. J. (1972). Permutation groups with multiply transitive suborbits. Proc. London: Math Soc. 6: 136-140.

Cameron, P. J. (1994). Combinatorics: Topics, Techniques and Algorithms. Cambridge: Cambridge University Press.

Coxeter H. S. M. (1968). My graph, Proceedings of London Mathematical Society., 46, pp. 117-136.

Faradzev, I. A., \& Ivanov, A. A. (1990). Distance-transitive representations of Groups G with $\operatorname{PSL}(2, q) \unlhd G<\operatorname{P\Gamma L}(2, q)$. European Journal of Combinatorics, 11, 347-356.

Gachimu, R., Kamuti, I., Nyaga, L., \& Rimberia, J. (2015). On the suborbits of the Alternating group A_{n} acting on ordered r-element subsets. International Electronic Journal of Pure and Applied Mathematics, 9(3), 137-147.

Gachimu, R., Kamuti, I., Nyaga, L., Rimberia, J., \& Kamaku, P. (2016). Properties and invariants associated with the action of the Alternating group on unordered subsets. International Electronic Journal of Pure and Applied Mathematics, 106(1), 333-346.
Guler, B. O., Kader, S., \& Besenk, M. (2008). On Suborbital Graphs of the Congruence Subgroup. Journal of Computational and Mathematical Sciences, 2(3), 153-156.

Habaut, X. L. (1975). Strongly Regular Graphs. Discrete Math, 13, 357-381.
Hamma, S., \& Aliyu, S. O. (2010). On transitive and primitive dihedral groups of degree 2^{r} (r ≥ 2). Archives of Applied Science Research 2, 2(5), 152-160.

Harary, F. (1969). Graph Theory. New York: Addison-Wesley Publishing Company.
Higman, D. G. (1966). Primitive rank 3 groups with a prime subdegree. Math. Zeitschrift, 21, 70-86.

Higman, D. G. (1970). Characterization of families of rank 3 permutation groups by subdegrees I. Arch. Math, 21, 151-156.

Ivanov, A. A. (1983). Bounding the diameter of a distance-regular graph. Sov. Math. Dokl., 28, 149-152.

Ivanov, A. A. (1984). Combinatoric-Algebraic Methods for The Investigation of DistanceRegular Graphs. Ph.D. Thesis. The Netherlands: University of Amsterdam.

Ivanov, A. A., Klin, M. H., Tsaranov, S. V., \& Shpektorov, S. V. (1983). On the problem of computing subdegrees of transitive permutation groups. Soviet Mathematical Survey, 38, 123-124.

Jones, G. A., Singerman, D., \& Wicks, K. (1991). The Modular group and Generalized Farey graphs in groups, St. Andrews 1989, Eds. C. Campbell and E. F. Robertson, London Mathematical Society lecture notes series 160,. Cambridge: Cambridge University Press.

Kamuti, I. N. (1992). Combinatorial Fomulas, invariants and structures associated with primitive permutation representations of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q), P h D$. Thesis. U.K.: University of Southampton.

Kamuti, I. N. (2006). Subdegrees of primitive permutation representations of PGL(2,q). East African Journal of Physical Sciences, 7(1/2), 25-41.

Kamuti, I. N., Inyangala, E. B., \& Rimberia, J. K. (2012). Action of Γ_{∞} on Z and the corresponding Suborbital graphs. International Mathematical Forum Vol.7(30), 14831490.

Keskin, R. (2006). Suborbital graphs for the Normalizer of $\Gamma_{0}(\mathrm{~m})$. European Journal of Combinatorics, 27, 193-206.

Kiman, P., Rimberia, J., Muthoka, G., \& Hussein, L. (2014). Application of marks to computation of ranks and subdegrees of the symmetric group acting on ordered pairs and on ordered triples. Mathematical Theory and Modelling vol. 4 No. 13.

Kinyanjui, J. N., Musundi, S. W., Rimberia, J., Sitati, N., \& Makila, P. (2013). Transitivity of An ($\mathrm{n}=5,6,7,8$) on unordered and ordered pairs. mternational Journal of Mathematical Archive 4 (9), 77-88.

Kulkami, R. S. (1991). An Arithmetic-Geometric method in the study of the subgroups of the Modular Group. American Journal of Mathematics, 113, 1053-1133.
Nagai, O. (1961). On transitive groups that contain non-abelian regular subgroups. Osaka J. Math, 13, 199-207.

Neumann, P. M. (1977). Finite Permutation Groups, Edge-Coloured Graphs and Matrices. In Curran M. P. (Ed.), Topics in Group Theory and Computation. London: Academic Press.

Nyaga, L., Kamuti, I., Mwathi, C., \& Akanga, J. (2011). Ranks and Subdegrees of the Symmetric group, S_{n} Acting on Unordered r-element Subsets. International Electronic Journal of Pure and Applied Mathematics, 3(2), 147-163.

Petersen, J. (1898). Sur Le Theoreme de Tait. Intermed. Math, 225-227.
Rimberia, J. K., Kamuti, I. N., Kivunge, B. M., \& Kinyua , F. (2012). Properties of Suborbits and Suborbitial Graphs of the Symmetric Group S_{n} acting on r-element subsets. Journal of mathematical sciences, 23, 391-398.

Rimberia, J. K., Kamuti, I. N., Kivunge, B. M., \& Kinyua, F. (2012). Ranks and Subdegrees of the symmetric group S_{n} acting on ordered r-element subsets. Journal of mathematical sciences, 23, 383-390.

Rose, J. S. (1978). A Course on Group Theory. Cambridge: Cambridge University Press.
Schoeneberg, B. (1974). Elliptic Modular Functions. Berlin: Springer Verlag.
Sims, C. C. (1967). Graphs and Finite Permutation Groups. Mathematische Zeitschrift, 95, 76-86.

Tchuda, F. L. (1986). Combinatorical - geometric characterization of some primitive representations of groups $\operatorname{PSL}(n, q)$ for $n=2,3$. University of Kiev U.S.S.R: Ph.D. Thesis.

Wielandt, H. (1964). Finite Permutation Groups. NewYork and London: Academic press.

