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ABSTRACT 

Globally, rangeland and cropland are ecosystems that rely exclusively on soil moisture 

influenced by dynamic interaction of eco-hydrologic variables caused by climate variability 

and soil for sustainable biomass/yield production. There are challenges of up to date variable 

measurements within adequate information of spatio-temporal soil moisture variation and 

biomass in the selected Kenyan ecosystems. The specific objectives under the study were the 

determination of spatio-temporal soil moisture storage and retention capacities in the 

ecosystems; Simulation of the influence of bi-seasonal soil moisture variability on rangeland 

and cropland biomass yield using coupled Hydrus-1D and Agricultural Production Systems 

Simulator. Finally, to analyse the impact of bi-seasonal soil moisture variation on land use 

land cover in rangeland and cropland vegetation. Remote sensing and Geographical 

Information System derived land use land cover classification maps from Normalized 

Difference Vegetation Index values for real-time monitoring were obtained and processed via 

MODIS and Proba-V imagery satellite data. Random undisturbed core soil samples collected 

from ten (10) sampling points with five varying replication depths of P1 (0-5cm), P2 (5-

10cm), P3 (15-20cm), P4 (35-40cm) and P5 (75-80cm) for ground based (in-situ) installed 

5TM-ECH2O probes. Time series variation shows that volumetric water content of spatially 

distributed probes in wet season ranged between 0.11 and 0.32m
3
m

-3
 (0.16m

3
m

-3
) and in dry 

between 0.04 and 0.17m
3
m

-3
(0.11m

3
m

-3
) across the rangeland respectively. Cropland 

volumetric water content in wet season ranged between 0.13 to 0.37m
3
/m

3
 (0.22m

3
m

-3
) and 

dry between 0.06 to 0.22m
3
m

-3
(0.14m

3
m

-3
) respectively. Water retention shown that field 

capacity of soil water content at -3 bars ranged between 0.16cm
3
H2O/cm

3
soil and 

0.22cm
3
H2O/cm

3
soil across the rangeland. APSIM model simulated cropland and rangeland 

above ground biomass reasonably well, where rangeland model performance gave NSE = 

0.988, r = 0.000, RMSE = 0.103tonha
-1

 and R
2
 was 0.988. In overall, the rangeland covers 

approximately 717.203km
2
(46.75%) with total above ground grass biomass in dry and wet 

season of 35.094 tonha
-1

(2,516,952.208 and 42.123 tonha
-1

 (3,021,074.197) tonnes per 

season respectively. Land use land cover change indicates gradual encroachment of livestock 

and commercial wheat farms into the grassland in the last decade (2009-2019). This has 

decreased (closed, evergreen broadleaved) forest cover while conversion of Naivasha 

cropland from rain fed to irrigated cropland is also gradually increasing. In conclusion, soil 

moisture, biomass and change in land use land cover vary seasonally as influenced by climate 

variability. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

FAO (2015) estimates that out of the earth's 132 million square kilometres of land, about 

25 million square kilometres is used for cattle pasture and about 15 million square kilometres 

is used for agriculture. According to research conducted by Huyghe et al. (2014a), permanent 

grasslands account for 33% of Europe's agricultural land, whereas temporary grasslands 

account for 6%. Furthermore, land usage and cover differs from nation to country due to low 

and unpredictable precipitation Kenya's rangeland ecosystems are characterised by 

fluctuating supply of fodder for wildlife and livestock feeds (Smith et al., 2010). Around 10 

million people reside in the Kenyan rangelands, which also produce nearly to 70% of the 

nation's cattle and around 90% of its yearly tourism revenue. Most of these areas have 

abundant fodder of different quality during typical wet seasons (Mbatha & Ward, 2010). 

Ontitism et al. (2000), further stated that forage is scarce and generally of low quality during 

dry seasons. According to Reid et al. (2004), rangeland is any area that is used for grazing 

cattle and wildlife in its natural environment and is dominated by grasses, grass-like plants, 

forbs, or shrubs. Biomass refers to all plant life in the watershed, including grasses, shrubs, 

trees, agriculture wastes, and human and animal waste. About 80% of Kenya's dry and 

semiarid terrain consists of rangelands. When plants have limited access to water, their 

stomata conductance decreases so that they can preserve water; this, in turn, slows 

photosynthesis and reduces the amount of carbohydrates the plant can store. However, the 

availability of soil moisture as required for plant growth is a major limitation on the capacity 

of an agro-ecological system to produce biomass. Accurate observations of root zone soil 

moisture over vast spatial extents are necessary for model validation and run-time 

assimilation due to soil moisture being a state variable in many hydrological, meteorological, 

and agricultural models (Brocca et al., 2010a; Grayson & Western, 1998). Factors that affect 

soil moisture include (1) precipitation history, (2) soil texture (which determines water 

holding capacity), (3) land surface slope (which influences runoff and infiltration), and (4) 

vegetation and land cover (which influences evapotranspiration and deep percolation) at any 

given time. Agricultural expansion is blamed for the decline of wildlife in rangelands because 

it causes the loss of habitat and the fragmentation of wildlife migration corridors. Mulinge et 

al. (2015) discovered that the rate of severe deterioration in Kenya increased from 23 to 30 

percent between 1997 and 2000. According to Waithaka (2004), the Kenya Maasai Mara 

National Reserve (MMNR) is one of the most productive natural terrestrial ecosystems 
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because it supports more than 1.3 million wildebeest, 200,000 zebras, and thousands of 

Thomson's gazelles. It supports roughly 237 herbivores per km
2
, making it unique in the 

world. 

The Mara rangelands have shown remarkable durability throughout the years, 

accommodating an exceptionally high biomass of both permanent and seasonal herbivores 

(Lamprey & Reid, 2004). However, wildlife populations have declined as a result of the loss 

of habitat caused by the conversion of vast swaths of rangelands in the Loita plains (to the 

north of the national reserve) to large-scale commercial farms (Homewood et al., 2001; 

Lamprey & Reid, 2004; Serneels & Lambin, 2001). The impact of shrub and tree invasion on 

various soil attributes varies greatly depending on plant species, regional climate, and soil 

type in areas where herbaceous plants are the dominant vegetation type (Barger et al., 2011; 

Schuman et al., 2002). Degradation leads to desertification and the introduction of invasive 

species if it is not properly managed. As water is a finite resource, any shifts in its 

distribution are likely to have far-reaching consequences for a region's agricultural output and 

social make-up, as argued by Smith et al. (2014). The ecosystem of the Naivasha croplands is 

under pressure from nearby infrastructural construction and industrial activity. Naivasha's 

subsistence farmers are making the switch to water-saving industrial horticulture techniques 

like drip irrigation and greenhouse construction because of the region's limited availability of 

surface water caused by rains. 

1.2 Statement of the Problem 

Climate variability with change in land use, land cover may lead to the alteration of soil 

matrix and thus poor infiltration. This phenomenon is accompanied by excess runoff 

downstream in form of storm water resulting to less moisture storage and retention for 

vegetation growth and healthy blossom of biomass in an ecosystem. The decrease in soil 

porosity and increase in bulk density minimizes storage and retention capacities of soil 

moisture dynamics suitable for vegetation development. Economic and social motives have 

led to increased rates of change of cropland use and rangeland encroachment of livestock 

herds and, as a consequence, continuous displacement of free-ranging animals. The 

ecosystems are currently threatened by ecological problems associated with climate 

variability, land use changes, land degradation, socio-economic problems, breakdown of 

traditional governance structures and shared habitats. Due to this, there is need for research in 

understanding soil moisture variability on ecosystems nature and its continual influence on 

vegetation growth and biomass productivity.  
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1.3 Research Objectives 

1.3.1 Broad Objective 

The overall objective was to evaluate the seasonal effect of climate variability on soil 

moisture and biomass production under rangeland and cropland ecosystems. 

1.3.2 Specific Objectives 

The specific objectives of the study were: 

i). To determine the spatio-temporal soil moisture storage and retention capacities in 

rangeland and cropland ecosystems. 

ii). To simulate the influence of bi-seasonal soil moisture variability on rangeland and 

cropland biomass yield using coupled Hydrus-1D and Agricultural Production Systems 

Simulator Model. 

iii). To analyse the impact of bi-seasonal soil moisture variability on land use change in 

rangeland and cropland vegetation cover. 

1.4 Research Questions 

i). How do spatio-temporal soil moisture storage and retention capacities vary in rangeland 

and cropland ecosystem? 

ii). How does simulation of bi-seasonal soil moisture variability influence biomass yield in 

rangeland and cropland ecosystems using coupled Hydrus-1D and Agricultural Production 

Systems Simulator models? 

iii). How does bi-seasonal soil moisture variability impact on land use change in rangeland 

and cropland vegetation cover? 

1.5 Justification 

Soil moisture variability on spatial and temporal scale affects the distribution of biomass 

yield in both rangeland and cropland ecosystems. Weather conditions over time consecutively 

combine to form climate variability, which affects soil moisture variability and in turn 

influences vegetation growth and development. This variation is caused by long-term changes 

of atmospheric air, soil physical and chemical properties coupled with climatic variables such 

as rainfall patterns, temperature, humidity, wind speed, and direction among other weather 

variables. Notably, the majority of rangelands are constrained by water inputs, whether due to 

meteorological drought caused by low rainfall or agricultural drought caused by management 

practices that reduce the soil's ability to infiltrate and store water, thereby limiting crop or 

forage production (Mishra & Singh, 2010; Rockstrom, 2003). The study was informed by the 

migratory reasons of wildebeest, zebras, and habiting herbivores depending on biomass as 

feedstock. This seeks to address the effect of climatic variability attributes to soil moisture 
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variation on biomass build-up in ecosystems. Stressed plants result in low biomass 

production/yields due to limited soil moisture storage and retention for plants utilization. The 

need of understanding ecosystems and conservation policies on soil moisture content and 

monitoring clearly shows how aboveground biomass production (AGB) of vegetation allows 

for proper management and conservation in both ecosystems. The findings of the predicted 

biomass quantity and land cover in the study will permit ecosystem‟s planners, policy 

formulators, and managers‟ to schedule and fairly distribute, upscale or downscale their 

livestock/wildlife adjustment per unit area (carrying capacity) and allows the restoration of 

both environmental and economic exploitation. The productivity estimates of rangelands 

biomass and croplands yield trend provides the state of art practical experience and measures 

for management and assessment of vegetation vigour and growth capacity.  

1.6 Scope and Limitations 

The study focused on temporal and spatial soil moisture variability as the common 

denominator and its effect on biomass yield during bi-seasons (wet and dry) as influenced by 

climate variability; however, soil physical properties, with chemical properties were also 

evaluated on both ecosystems. The research also dealt with MMNR and Naivasha cropland 

ecosystem behaviour in view of soil moisture trends and biomass using selected models. The 

study took 2
1/2 

consecutive
 
years that were used on instruments installation, soil sampling, 

soil analysis and setup of data collection tools for calibration and validation. The limitation of 

the study was attributed by large extent of spatio-temporal soil moisture and biomass 

collected from different soil moisture, soil temperature probes (5TM-ECH20) sites used to 

calibrate the cosmic ray soil moisture sensor (CRNS). Further, destructive clipping of grass 

AGB samples was experienced with inadequate drying of quadrat harvested green matter due 

to cloudy daily weather conditions during the research period. Most importantly, there was no 

noticeable weight loss in the use of in-situ solar and oven drying of clipped grass biomass. 

 

 

 

 

 



5 

CHAPTER TWO 

LITERATURE REVIEW 

2.1 Climate Variability 

Changes in the mean state of the climate and other climate statistics (such as the 

frequency with which extremes occur and the size of their standard deviations) are all 

included in the broader concept of climate variability, which extends to all time and space 

scales beyond those of individual weather events. The behaviour of the ever-changing 

atmosphere can be seen on a daily or weekly basis, and is known as weather variability. 

Herrero et al. (2010) claimed that climate is the most influential predictor in rain-fed 

agricultural systems, and its impact is considerably greater in arid and semi-arid regions 

(ASALs). Worldwide, regionally, topographically, and locally, precipitation has been used to 

explain why semi-arid regions have such a wide range of yields (O'Connor et al., 2001; Shan 

& Chen, 1993). Several studies in the last decade have shown that precipitation and soil 

moisture are strong indicators of total net aboveground primary productivity (NAPP) (Briggs 

& Knapp, 1995). Climate variability and change are realities that have an impact on rural 

livelihoods in West Africa today, as well as in many other parts of Africa and around the 

world, as observed by Jalloh et al. (2013). However, Mora et al. (2015) showed that the 

number of ideal growing degree-days would drop by as much as 11 percent worldwide if 

other limiting climatic factors including temperature, water availability, and solar radiation 

were taken into account. Significant climatic variables that influence the spatial and temporal 

availability of soil moisture include precipitation, relative humidity, air temperature, solar 

radiation, and wind speed. 

Roughly sixty percent of the world's rangelands fall under the "dry" category. Galvin et 

al. (2008) and the fact that there isn't enough water during certain months of the year (Plisnier 

et al., 2000; Scholes et al., 1997) put at risk any local human populations that depend on 

ecosystem services that is often lessened by migration. According to Western et al. (2003), 

mean annual rainfall is not the only factor that affects pasture production; the seasonality of 

rainfall does so as well. Although rainfall estimates for the West African region are imprecise 

due to ambiguity in assessing potential vegetation-climate linkages (Intergovernmental Panel 

on Climate Change [IPCC], 2013), climate projections show that the rainfall differential 

between wet and dry regions and wet and dry seasons would rise. 

2.1.1 Temperature and Wind Speed 

Numerous ecological processes, including net primary production, root biomass, and soil 

respiration, are influenced by changes in temperature and precipitation patterns (Knapp et al., 
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2008). Plants' photosynthesis and respiration are affected by temperature (Peng et al., 2013), 

and temperature is the key determinant in determining when the growth season begins and 

ends (Piao et al., 2005; Piao et al., 2008). The dispersion and movement of atmospheric 

contaminants can be calculated using accurate wind speed observations. This includes not 

just the rate at which the wind is blowing but also its direction and how turbulent or gusty it 

is. Reduced crop yields are anticipated in some regions of the developing world, most notably 

Sub-Saharan Africa and portions of Asia, due to changes in temperature, precipitation, and 

extreme weather events caused by climate change (Gornall et al., 2010). Environments vary 

in terms of temperature, radiation, and water availability, all of which interact to place 

complex and unique limits on plant growth and development (Nemani et al., 2003). 

2.1.2 Solar Radiation 

Absorption of solar radiation is the energy source for photosynthesis since it provides the 

raw material for the process of electronic excitation. Soil moisture is a better indicator of 

plant-available water than precipitation alone (Liu et al., 2013). Crop yield decreases of up to 

50% in West Africa due to warmer temperatures were projected by scientists (Roudier et al., 

2011; Tamiru & Fekadu, 2019) due to the effects of global warming on temperature and 

precipitation. This in turn affects the soil moisture status and ground water level. 

Additionally, once the temperature rises by more than 2 degrees Celsius, the detrimental 

impacts of this temperature increase cannot be compensated for by any hypothetical increase 

in rainfall (Sultan et al., 2013). Changes to the landscape are likely due to rising levels of 

drought, warmth, wildfire, and invasive species, which will make many formerly productive 

agricultural and wildlife areas unusable. 

2.1.3 Evapotranspiration 

As much as 70% of precipitation is thought to be returned to the atmosphere by 

evapotranspiration (ET), which includes soil evaporation, plant transpiration, and canopy 

intercepted rainfall evaporation (Kalma et al., 2008; Trenberth et al., 2011). When 

calculating latent (evaporative) and sensible heat fluxes, eddy covariance (EC) makes use of 

high-frequency measurements of water vapour concentration, air temperature, and vertical 

wind speed. In particular, evaporation is limited by the amount of water in the soil 

(Seneviratne et al., 2010), meaning that it affects plant stress and response. Actual 

evapotranspiration ( aET ) is determined by subtracting losses from sensible heat flux (energy 

needed to heat the air) and ground heat flux from net surface radiation (energy stored in the 

soil and vegetation). The major „sink' term in Equation (2.1) is evapotranspiration, or water 
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uptake by plants, which indicates the quantity of soil moisture that is utilized through crop 

consumption. 
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(2.1) 

where, θ2, is the volumetric soil moisture content of the root zone depth Z on day 2 (cm
3
 cm

-

3
), θ1 is the volumetric SMC on day 1 (cm

3
 cm

-3
), and Z is the root zone depth (cm). Effective 

precipitation, capillary rise, deep percolation, surface runoff/drainage out of the field, and 

crop evapotranspiration on day 1 are represented by RF1, CR1, DP1, DR1, and ET1, 

respectively (cm). Comparing the eddy covariance and catchment water balance methods, 

Wilson et al. (2011) found that annual evapotranspiration was similar between the two 

methods. Pauwels and Samson (2006) examined the estimates of latent heat fluxes from 

BREB and EC-based models in wet sloping grassland and found considerable agreement 

between the two approaches. The comparison between the BR-DTS and the reference 

approaches revealed a very strong correlation between the sensible heat flow at seven data 

points (slope of 0.93, zero offset of 4.7Wm
-2

 and R
2
 of 0.88). 

2.2 Bowen Ratio Theory 

Determining the latent heat flow and real land surface evaporation is as easy as using the 

Bowen ratio (BR) method of surface energy balance. Measurements of the air's temperature 

and vapour pressure gradient are used to determine the Bowen ratio. Latent heat fluxes can be 

calculated using the Bowen ratio in conjunction with net radiation (Rn) and the soil heat flux 

(Go). Shi et al. (2008) calculated latent heat transfer inside a temperate mixed forest of broad-

leaved and coniferous trees in north-eastern China's Changbai Mountains. The author used 

three different techniques during the growth seasons (May to September) of 2003 – 2005: 

EC, BREB, and Penman–Monteith (PM). He found that the patterns of diurnal and seasonal 

variations in latent heat fluxes were similar across the three approaches. 

2.2.1 Latent Heat Flux 

The rate of latent heat loss from the surface as a result of evapotranspiration is known as 

latent heat flux ( E). Equation (2.2) allows for the following representation of the latent 

heat: (2.2) 

HGRE on                                                                                                                  (2.2) 

A single remote sensing data point used to assess land surface fluxes, namely evapo-

transpiration, is the estimation of evaporative fraction ( ), which is the ratio of latent heat 
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flux over available energy. It's common knowledge that during days with a 12-hour daylight 

period in fair weather, the evaporative percentage exhibits diurnal behaviour (Bastiaansen et 

al., 1996). Niaghi (2019) assessed ET in the upper Midwest in 2018 using the EC, BREB, 

and soil water balance methodologies throughout the corn-growing season. The author found 

that when comparing the estimated E  by the EC system's residual approach to the 

determination by the BREB system across the whole growing season, the EC system's 

estimate was 29 percent higher. 

2.2.2 Sensible Heat Flux (H) 

Rate of heat loss to the air by convection and conduction due to a temperature 

differential, denoted by the sensible heat flux (H), is given by the following formula: 

ah

pair
r

dT
CH 

                                                                                                                     

(2.3) 

Where air  is the density of air (in kilograms per cubic meter), 
pC is the specific heat of air 

(1004 Jkg1K1), dT  is the difference between the temperature of the air and the temperature 

of the air near the surface, ( sa TTdT  ), and rah is the resistance of air to movement. Using 

a modified Bowen ratio approach, Foken (2015) discovered that sensible and latent heat 

fluxes could be determined with uncertainties of about 10% for the former and about 20% for 

the latter techniques. 

2.2.3 Soil heat Flux 

The rate at which a soil stores heat due to temperature gradient between its surface and 

its uppermost layer is known as the soil heat flux 0G , and it is measured in watts per square 

meter (Wm
-2

). 0G Measurements of under field conditions are possible if the thermal 

conductivity of the soil is known, as shown below: 

z

T
G s

sO



 

                                                                                                                        

(2.4) 

“where, s  = the thermal conductivity of the soil,  sT  = temperature difference between 0T  

and 1T  and Z = depth difference between 0z  and 1z ”· 

2.2.4 Net Radiation 

Atmospheric conditions must remain constant for there to be a net radiation balance 

between incoming and outgoing short wave and long wave radiation. 

 LLssn RRRRR
                                                                                            

(2.5) 



9 

“where, nR is the net radiation (W·m
−2

), Rs is the incoming short-wave radiation (W·m
−2

), 

and Rs is the outgoing short-wave radiation (W·m
−2

), while RL↓ is the incoming long-wave 

radiation (W·m
−2

), and RL↑ is the outgoing long-wave radiation (W·m
−2

). The net short-wave 

radiation can be written as follows:” 

    arcss dSRR   cos.11
                                                                   

(2.6) 

Where  is the surface albedo, cS is the solar constant (Wm
-2

), θ is the angle at which the sun 

hits the surface, rd  is the distance between the Earth and the Sun, and a is the amount of 

light that can pass through the atmosphere. The atmosphere's downward thermal radiation 

flux is responsible for the entering long-wave radiation. It is possible to determine the 

emissivity of a cloudless atmosphere by determining the relationship between the amount of 

water vapour, the pressure, and the temperature. 

4

askyL TeR  
                                                                                                             

(2.7) 

Where
skye  is the emissivity of air, σ is the Stefan-Boltzmann constant (in Wm

-2
K

-4
), and Ta is 

the air temperature (K). The Stefan-Boltzmann equation is used to calculate the long-

wavelength radiation that is emitted. 

4

soL TR  
                                                                                                                

(2.8) 

where, O  is the surface emissivity and sT  is the surface temperature (K).  

2.2.5 Surface Energy Balance 

The energy entering the surface must match the energy leaving during the same time. 

The energy balance equations must take into account all energy fluxes. The equation for a 

surface in the process of evaporation is: 

on GHELkR  
                                                                                                   

(2.9) 

Where nR  is net radiation, k net short-wave radiation, L net long-wave radiation, E  latent 

heat flow (Wm
-2

), H sensible heat flux (Wm
-2

), and oG  soil heat conduction are variables 

(Wm
-2

). The distribution of daytime net radiation among sense heat flux, latent heat flux, and 

soil heat conduction is determined by the surface's composition. Evaporation potential is the 

primary factor in determining the relative importance of sensible and latent heat fluxes. 

Veenendaal et al. (2004) investigated seasonal variations in energy fluxes and carbon dioxide 

exchange in a broad-leaved semi-arid savannah (Mopane forest) in Southern Africa. They 

found that throughout the rainy season, the Bowen ratio (b) was frequently just below unity, 
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and that sensible and latent heat fluxes were linearly proportional to incoming solar radiation 

(I). During the dry season, when solar radiation is low (about 150Wm
-2

), b is normally around 

1, but it rises dramatically with I, reaching values of 4 or 5 around solar noon. As a result, 

under these dry conditions, practically all of the available energy was lost as sensible heat 

rather than latent heat. 

2.2.6 Water Vapour 

A volume of air's relative humidity is expressed as a percentage based on the difference 

between its actual vapour pressure and its saturation vapour pressure. It's also utilized to 

calculate the deficit in vapour pressure that's having an effect on plant growth. 

oe

e
Rh 

                                                                                                                             
(2.10) 

Where Rh  is the relative humidity on a certain day, e is the actual vapor pressure on a 

particular day ( kPa ), and is the saturation vapor pressure on a particular day ( kPa ). 

The rate of evaporation is directly related to the pressure differential between the surface and 

the surrounding air. The gap between the two is known as the vapour pressure deficit. 

eevpd o                                                                                                                         (2.11) 

where vpd is the actual vapor pressure on a given day kPa , oe is the saturation vapor 

pressure for that day kPa , and e is the vapor pressure deficit for that day ( kPa ).The higher 

the value of, the quicker the rate of evaporation. The quantity of heat energy needed to 

vaporize liquid water (by dissolving its hydrogen bonds) is known as its latent heat of 

vaporization. 

2.3 Soil Water Dynamics 

This refers to soil's ability to control the availability of fresh water on land by filtering, 

retaining, or storing precipitation for plant use. In addition, it comprises the movement of 

these contaminants along flow pathways to both groundwater and surface water sources. 

Therefore, soil hydrologic processes are vital to the survival of nearly all land and freshwater 

organisms (O'Geen et al., 2010). Numerous elements influence the water dynamics in soil, 

which vary vertically with depth, laterally across landforms, and temporally in shorter time 

span reaction to long-term climate change (Swarowsky et al., 2011). Furthermore, dynamic 

elements like rainfall, evapotranspiration, drainage, lateral flow, and the presence of water 

tables affect the geographical and temporal distribution of soil moisture (Reynolds, 1970; 

Takagi & Lin, 2011). Estimating soil moisture is important for hydrology and agriculture 

because it affects how much water is available for plants to grow (Rodriguez-Iturbe, 2000) 
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and how deep aquifers are refilled (Hodnett & Bell, 1986); and (ii) the saturation of soils, 

which affects how rain is split between runoff and infiltration (Hodnett & Bell, 1986; 

Rodriguez-Iturbe, 2000). 

                                                 Rainfall 

 

 

 

 

 

      DROEsEtSWIR   

 

Figure 2.1: Schematic diagram of soil moisture dynamics (Swarowsky et al., 2011) 

2.3.1 Soil Water Storage 

Bullied and Entz (1999) suggest that soil water storage is the amount of water that a 

plant's roots store in the soil. An increase in rooting depth suggests that there is more water in 

the soil, providing the crop with more moisture in between rains. In water-limited areas, plant 

productivity often rises linearly with mean annual precipitation or actual ET, provided that all 

other conditions remain unchanged (Chong et al., 1993). Soil moisture is a dynamic feature 

that shifts over time and space as a result of usage and redistribution via subsurface 

movement and in response to climatic and topographical conditions (Western et al., 1999). 

The amount of water present in the soil at any one time is known as its water content, and it 

can be measured either volumetrically or gravimetrically. In a wet basis context, water 

content (WC) measures the total amount of liquid water in a soil sample, while moisture 

content (MC) measures the total amount of water vapour and other volatile components. 

Water content and moisture are measured in the following ways; 

Water content in wet basis, 100% 



w

dw
wb

W

WW
mc

                                                  

(2.12) 

Moisture content in dry basis, 100% 



d

dw
db

W

WW
mc                                                (2.13) 

where, Ww = the wet weight, (g) 

       Wd = the weight of soil solids, (g) 

The ability of soil to store water is affected by factors such as particle size, the proportion of 

organic matter in the soil, and the depth of the soil. The spatial and temporal variability of 

Runoff 

Infiltration Soil Horizon 1 

Ets 

Soil Horizon 2 

Es 

Drainage 

Soil moisture 

storage and 

retention capacity 
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soil-water characteristics is high (Gomez-Plaza et al., 2000). In semi-arid and dry 

environments, for example, spatial and temporal changes in soil moisture have traditionally 

been major challenges in vegetation regeneration and water resource management (Brevik et 

al., 2015; Yu et al., 2015). The amount of soil water that is accessible depends heavily on the 

soil's texture, and the soil's ability to store water can rise by as much as 3.7% for every 1% 

increase in soil organic matter (Bot & Benites, 2005). Water movement in soil is controlled 

by particle size and packing, both of which are in turn governed by the size and shape of 

pores. Soil structure, aggregate stability, particle size distribution, and land use system all 

have an impact on the features of soil moisture, which are important soil hydrological 

qualities (Fu et al., 2000). A soil's bulk density can be calculated by dividing its mass after 

drying it for 16 hours or more at 105 degrees Celsius by its initial volume, as stated by Easton 

et al. (2015). Similar to how bulk density is calculated, particle density is calculated by 

dividing the mass of the dry soil by the volume of the solid soil components while ignoring 

the pore space. Particle density in soil refers to the average weight of the individual mineral 

grains that make up a given volume of soil. 

m

m
m

V

M


                                                                                                                           

(2.14) 

where, mM is the mineral grain's mass and mV is its volume. Value is usually calculated based 

on the soil's mineral content rather than measured. Because quartz, one of the most common 

minerals in soils, also has a density of 2.65 g/cm
3
, most soils have a particle density of 

roughly 2.65 g/cm
3
. Soils that contain a lot of either clay (2.83 g/cm

3
) or organic matter (0.8 

g/cm
3
) would have a different particle density than the estimated 2.65 g/cm

3
 because of these 

additional components. The soil's dry density is known as its bulk density. 

mwa

m

s

m
b

VVV

M

V

M




                                                                                                   

 (2.15) 

where, sV  is the total volume of the soil sample, which is the sum of the volume air, aV  

liquid  water, wV  and mineral components, mV  of the soil respectively. 

Soil aggregation, texture, root penetration, and other biological activity like burrowing insects 

and worms all have a major impact on soil porosity. The presence of organic matter improves 

soil porosity by encouraging the formation of aggregates. Measuring the time it takes for a 

certain volume of water to completely permeate the soil's microscopic pores is a scientific 

method for determining its porosity. The permeability is caused by; 



13 

m

b

mm

sm

s

ms

s

wa

VM

VM

V

VV

V

VV
n










 1

/

/
1

                                                                     

(2.16) 

n  value for is typically calculated by measuring and making reasonable assumptions about 

m . Soil types can have a n value anywhere from about 0.25 to 0.75. Niu et al. (2015) 

showed that the soil moisture condition in semi-arid sandy soils is affected by the land use. 

Soil moisture levels varied depending on the type of land use, with grassland having the 

greatest levels, followed by cropland, poplar land, inter-dunes, and shrub land. The temporal 

fluctuations in soil moisture across different land uses were not always consistent with the 

rainfall due to the dry sequence. One measure of soil moisture is its saturation, which is 

defined as; 

n
Sd


 ,                                                                                                                               (2.17) 

Intensity of saturation might be either 0 or 1. A soil sample of known volume is first 

weighed, followed by oven drying at 105°C, reweighing, and calculation to determine the 

volumetric moisture content; 

sw

dry

s

wet

s

V

MM







                                                                                                              

(2.18) 

where 
wet

sM and
dry

sM  is the initial and final masses before and after drying, respectively, and 

is the density of water (1000 kg/m
3
). Soil moisture can be measured using this gravimetric 

technique. 

2.3.2 Soil Water Retention 

A soil's matrix potential describes the energy state of the water film and the volumetric 

water content is the quantity of water retained in the soil's pores (Liu et al., 2012). Particle 

size distribution, clay mineralogy, organic content, and hysteresis all play important roles in 

the water retention function (Van Genuchten, 1980). While the matrix potential is high (less 

negative number) and the water film is thick in a moist soil, it is low (more negative number) 

and the water film is thin when the soil dries out (Brady & Weil, 2010). Desorption at low 

and high pressure (0 and 0.1 bar, respectively) is used to reach a conclusion (0.3, 1, 3, 5 to 15 

bar). The 0.3 bar determination is commonly known as field capacity in agricultural settings, 

while the 15 bar determination is called the wilting point. The relationship between soil 

moisture tension and soil moisture content is known as the moisture retention curve or soil 

moisture characteristic. If the tension is written as the logarithm of cm of water, the resulting 
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graph is called a pF-curve (Figure 2.2). An index of available moisture in soils (the quantity 

of water that can be absorbed readily by plant roots) and soil types can be determined with 

the help of moisture retention curves. Both undisturbed and disrupted samples are used to 

establish moisture properties. 

 

Figure 2.2: Soil water retention curves adjusted by the cubic polynomial model at depths of 

20, 40, 60, and 80 cm (van Genuchten, 1980) 

“Sand, loam, and clay have volume percent values of 6, 20, and 17 respectively, which 

may vary depending on the soil type. By gradually increasing the pressure head and 

measuring the moisture content, we can develop a curve for the pressure head, h , versus the 

soil-water content,  . Pressure heads range between 0 (for saturation) and 10
7
 cm (for oven-

dry conditions). pF, like pH, is the logarithm of the tension or suction in centimetres of water. 

Thus, 

hpF log
                                                                                                                         

(2.19) 

The soil moisture retention curve (pF curve) depicts the relationship between suction and 

content of soil moisture (Van Genuchten, 1980). When a soil reaches F.C. (field capacity) or 

a pF-value of 2, it has been saturated by rainfall for approximately two to three days. When a 

soil dries out and plants are unable to absorb water, the soil reaches W.P (wilting point) or 

has a pF = 4.2. Available water is the amount of water held by a soil in the root zone between 

F.C. and W.P. that can be used by plants (F.C. - W.P. = Available Water Content). These 

values are constant depending on the type of soil since no soil is 100% pure. This is always 

the amount of water   retained in the soil profile between FC (or DUL), which is the drainage 
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upper limit and PWP (or DLL), as the lower limit usually can determined in the laboratory. 

Mathematically it can be expressed as: 

ZAW LLDU )(  
                                                                                                           

(2.20) 

The conversion of SMC from volumetric units into equivalent depth of water can be obtained 

as: 

Zd                                                                                                                                 (2.21) 

where, d is depth of water per unit of soil profile (cm); θ is volumetric soil moisture content 

(cm
3 

cm
-3

); and Z is depth of soil profile under interest (cm). In practice, soil is never allowed 

to dry out to PWP (or DLL), but is kept above a certain soil moisture before reaching a 

critical soil moisture level to avoid severe yield losses.” 

2.3.3 Surface Runoff 

Overland flow or surface runoff is the result of water that does not penetrate the ground. 

At the scale of hill slopes, interactions between vegetation patches and runoff become 

significant. According to Ludwig et al. (2005), plant patches and other surface obstructions 

can capture and retain surface runoff through a process known as runoff-run-on. Rain that 

does not soak into the ground and instead flows off into bodies of water is called surface 

runoff (Perlman, 2016). In contrast, it decreases when soil moisture increases. The surface 

depressions start to fill when the rate of application exceeds the rate of infiltration. If the 

application rate is still higher than the infiltration rate after all depressions on the surface 

have been filled, runoff will occur on the surface. Perlman (2016) notes that the amount of 

water that flows off the land as runoff varies with the season and location, with the other two-

thirds either evaporating, transpiring, or infiltrating the soil. 

2.3.4 Soil Infiltration and Hydraulic Conductivity 

Water enters the soil via infiltration when it drains or seeps downward from the surface 

(Thompson et al., 2010; Zhang et al., 2010). As water infiltration is essential for plant water 

supply and erosion prevention via overland flow, double-ring infiltrometers are commonly 

employed to assess the hydraulic conductivity of soils in situ (Ashraf et al., 1997; Ben-Hur & 

Assouline, 2002; Bouwer, 1986; Dirk et al., 1999). The presence of vegetation can greatly 

enhance infiltration because it slows overland flow, extending the time that water spends 

infiltrating the soil. Vegetation cover is essential for maximizing infiltration as it decreases 

soil compaction, buffers the force of rainfall hitting the soil surface, boosts porosity through 

root development, and boosts soil organic matter to encourage aggregation (Li et al., 2011). 
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Table 2.1: Some examples of constant infiltration rates for different soil types 

“Soil Type          Constant infiltration rate 

(mm/hr) 

Sand >30mm 

Sandy Loam 20-30 

Loam 10-20 

Clayey Loam 5-10 

Clay 1-5” 

       Source: (Bouwer, 1986) 

Soil hydraulic conductivity at or near saturation can be inferred from infiltrometry test 

results by fitting the volume of infiltrated water versus time. Ward and Robinson (1990) 

reported that the soil water retention )(h and hydraulic conductivity )(hK functions describe 

the soil's hydraulic properties. These functions describe how water moves through the vadose 

zone and how it is split between infiltration and runoff. Testing with infiltrometry can be 

done in a laboratory or on-site to get an estimate of the hydraulic conductivity (Ksat). Oguike 

and Onwuka (2018) tested a variety of land use systems in Ubakala Umuahia, Abia State, 

Nigeria, and found that the slowest saturated hydraulic conductivity (Ksat) was between 0 and 

20 centimetres deep (0.71 and 0.62 cm min
-1

). Under cassava-cultivated land, infiltration 

rates (Ir) were observed at 0.63 cm min
-1

, while the quickest Ksat (0.80 and 0.77 cm min
-1

) 

were recorded under 4-year bush fallow. Forests were the areas with the highest Ir (0.73 cm 

min
-1

). In all types of ecosystems, increasing soil depth increased field capacity and 

accessible moisture content while decreasing permanent wilting point. 

2.3.5 Drainage 

Richards' equation directs soil water seepage to depths beyond the root zone. Setting the 

bottom border of the soil column far enough down means it will have little impact on the root 

zone's soil moisture dynamics. It is assumed, as in Laio et al. (2001b), that the unsaturated 

hydraulic conductivity has an exponential shape, and the leakage rate in the root zone is equal 

to this value. 
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where, satK  is the saturated hydraulic conductivity, and   is a parameter of the soil. The 

field capacity fcS is the saturation at which the rate of gravity drainage becomes negligible 

relative to evapotranspiration. 

2.4 Modelling Application for Prediction and Decision Support 

According to Ma et al. (2011), mechanistic models' incorporation of biophysical processes 

enables them to anticipate system behaviour across a wide range of situations. The models 

are empirical in nature; therefore, they need to be calibrated initially using specific inputs and 

circumstances before being extrapolated to other soil, climatic, and management settings. 

Users must choose a model or models based on their goals and decision support criteria 

before defining the confidence intervals for model acceptance. The model(s) must then be 

calibrated using the experimental data that is currently available. 

2.4.1 Model Calibration 

In order to get accurate predictions from a model, imnek and Hopmans (2002) define 

model calibration as "the act of fine-tuning a model for a specific situation by adjusting the 

input parameters (e.g., soil hydraulic parameters) on boundary conditions within appropriate 

ranges until the simulated model outputs closely match the observed variables" (e.g., pressure 

heads, water contents, concentrations, various fluxes). Model calibration often involves 

selecting an objective function that may be used to quantify the degree to which observed 

data agrees with those predicted by the model and that is linked in some way to the 

parameters under study. The optimal fitting parameters are then selected by minimizing this 

objective function. Models can be calibrated either by trial and error or with the use of 

computerized minimization or parameter estimation strategies. For a model to be considered, 

calibrated it must be able to recreate data with an accuracy that is deemed satisfactory 

(Konikow & Bredehoeft, 1992). Model calibration is sometimes known as "history 

matching," "parameter optimization," or "parameter estimation" (imnek & de Vos, 1999). 

2.4.2 Soil Moisture Dynamic Models 

The study of the interplay between climate, soil moisture dynamics, and plant life is called 

eco-hydrology, and it is a relatively new scientific discipline (Rodriguez-Iturbe, 2000). Many 

elements, including fire, grazing, and nutrient availability, affect plant growth and survival, 

but so far researchers have focused primarily on water-controlled ecosystems (Laio et al., 

2001a;  Ridolfi et al., 2000; Rodriguez-Iturbe et al., 1999). Predictability varies with time and 

location, making seasonal forecasting a challenging subject of study and application. 

Furthermore, the predictable signal is often masked by natural fluctuation (Stockdale et al., 
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2010). These issues undermine the importance of this study and the justification for 

conducting presently, when the climate is highly unpredictable. Since precipitation is 

inherently unpredictable, and the processes of infiltration, evaporation, transpiration, and 

drainage are all nonlinear, soil moisture displays a wide range of complex variations. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Modified schematic representation of climate-soil-vegetation system interaction 

(Porporato & Rodriguez-Iturbe, 2002) 

As a result, the dynamics of soil moisture have a major bearing on the pressures 

experienced by plants and the degrees to which different plant species are adapted to a given 

environment. This simplification served as the foundation for a model created by Rodriguez-

Iturbe et al. (1999), who analytically determined the steady state probability density function 

(pdf) of soil moisture. D'Odorico et al. (2000) used these models to investigate the impact of 

seasonal climate variability on soil moisture. 

2.4.3 Vadose Zone Modelling Approaches 

The American Petroleum Institute (API) defines the vadose zone as the geological layer 

between the land surface and the regional water table (API, 1996). Because of the presence of 

air and water in its pore space, the vadose zone is also known as the unsaturated zone and, 

less frequently, the zone of aeration. Between the ground's surface and its water table is 

what's called the vadose zone. In porous media like soils, water movement is frequently 

described using the Darcy equation, which states that flow is proportional to the product of 

hydraulic potential times the hydraulic conductivity: 

z

H
Kq




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(2.23) 

where, q  is the flow rate, K  is the saturated hydraulic conductivity (length per time), H  is 

the hydraulic conductivity head differences, and z
 is the distance. The permeability is a 
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spatially variable property of soils (over several orders of magnitude over short distances). It 

is dependent on the soil texture, but also on the structural characteristics of the soil. Hydraulic 

conductivity is highly dependent on saturation level and thus on soil water tension. The 

Richards equation was developed based on this functional relationship by combining the 

Darcy equation and the continuity equation to describe flow in unsaturated porous media: 
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(2.24) 

where, )(hK and represent the unsaturated hydraulic conductivity and the moisture content 

respectively. Because of their capillary properties, both equations perform admirably in soils 

with low variability. The Richards equation has a long history of use in vadose zone 

hydrology for describing the flow of water. This equation relies on the mass conservation 

formula, 
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(2.25) 

is combined with Darcy‟s law, 
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which results in, 
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(2.27) 

where,  is the soil's moisture level, iq
 
is the water flux, h is the soil's matric potential, K  is 

the soil's hydraulic conductivity, t  is time, S  is a sink term to account for plant roots sucking 

up   water, and ix
 
is Cartesian coordinates. Specifically, 3x  it denotes the vertical axis of a 

coordinate system. To solve equation (2.25), it is necessary to define the moisture retention 

characteristic, )(h  the hydraulic conductivity function, K (h), as well as the beginning and 

boundary conditions. 

2.4.4 Bucket Model 

The bucket model approximates the dynamics of soil moisture using a volume balance 

equation applied to the root zone of a plant (Rodriguez-Iturbe et al., 1999): 

)()()(),( SESTSLtSI
dt

S
nZr 



                                                                               
(2.28) 

where, S represents the average saturation over the root zone, n represents the porosity, 

represents the depth of the root zone, I(S, t) represents the infiltration rate to the root zone, 
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L(S) represents the rate at which water is lost from the root zone, and T(S) and E(S) represent 

the transpiration and evaporation rates, respectively. 

 

  

 

              

 

 

 

Figure 2.4: Schematic representation of the vertically averaged bucket model (Rodriguez-

Iturbe et al., 1999) 

 

In this simplistic model, the soil moisture content across the root zone is simply 

represented as a single saturation value, with wetting front propagation disregarded. Root 

zone saturation is the only determinant of leakage and evapotranspiration losses. Figure 2.4 is 

a schematic representation of the bucket model, and Rodriguez - Iturbe et al. (1999) and Laio 

et al. (2001b) provide detailed explanations. 

2.4.5 Richards Model 

The Richards model resolves the soil column in the vertical dimension, and Richards' 

equation describes the soil moisture dynamics:  
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(2.29) 

where, s, is the local saturation, h is the water pressure head in lengths, z is positive downhill, 

and K is the unsaturated hydraulic conductivity in lengths per second. Local evaporation and 

plant uptake rates are given by the functions e′ and σ, respectively. Water is lost by 

evaporation at a depth of eZ  and taken up by the plant at a depth of in the root zone, rZ . The 

volume balance for layer i becomes, for a uniformly discretized soil column, 
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where, z , is the level of spatial discretization, ie and i are the (depth-per-time) rates of 

evaporation and plant uptake from layer i . The Richards model is depicted in a simplified 

form in Figure 2.5. When it comes to finding knowledge gaps and choosing the appropriate 
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process-based modules, Derner et al. (2012) stressed the importance of validating models 

with    well-designed experimental data. 

                                                          

 

 

 

 

 

 

Figure 2.5: Schematic representation of the one-dimensional Richards model (Rodriguez-

Iturbe et al., 1999) 

2.4.6 SWAT Model 

Soil and water analysis (SWAT) tool, is a watershed model created by Dr. Jeff Arnold in 

the early 1990s for the Agricultural Research Service of the United States Department of 

Agriculture (ARS). To predict long-term effects of land management strategies on water, 

sediment, and agricultural chemical yields in large, complex watersheds with varied soils, 

land use, and management circumstances. SWAT uses a cascading method to simulate 

changes in soil water content. When hourly precipitation data is available, it uses the Curve 

Number (CN) method to compute infiltration, and otherwise it uses the Green-Ampt method. 

Using SWAT (version 2012), Mwangi et al. (2016) evaluated the effect of land use change 

and climate variability on watershed hydrology in the Mara River Basin, East Africa. Their 

simulations indicated that agro- forestry in the watershed would decrease surface runoff, 

primarily as a result of the expected improvement of soil infiltration. The module works 

under the premise that soil moisture is continuously dispersed throughout its various levels. 

According to Brocca et al. (2012), additional study is necessary to optimize the framework of 

SWAT and other hydrologic models in order to maximize the benefits of including an 

increasing number of large-scale soil moisture observations. 

2.4.7 Variable Infiltration Capacity Model 

Variable Infiltration Capacity (VIC) is a process-based, regional hydrologic model created 

by Liang et al. (1994). With the variable infiltration capacity curve developed by Zhao et al. 

(1980) and the base flow formula developed by Franchini and Pacciani (1991), VIC can 

simulate infiltration and surface runoff. Liang et al. (1996) added multiple soil moisture 

layers to the mode while (the original version only had two). Water and energy fluxes are 

well represented in the VIC model, and the model can be run at sub-daily time steps, both of 
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which are necessary for comprehending land-atmosphere interactions and atmospheric 

coupling. This is because the VIC model was developed to be coupled to regional and global-

scale atmospheric models. Using historic land surface hydrology simulations from the VIC 

model, Sheffield et al. (2004) created a soil-moisture-based drought index. 

2.4.8 Hydrus Model 

Water flow across one-, two-, and three-dimensional variably saturated porous media can 

be simulated using the Hydrus (1D, 2D/3D) Windows-based computer programs. A 

California University is responsible for developing the software (Simunek et al. 2012; van 

Genuchten, 1985). Soil moisture dynamics are represented by the two-dimensional mode 

equations (2.29), (2.30), which are based on Richard's equation. Chen et al. (2014) utilized 

Hydrus-1D to replicate soil moisture in two sub-basins of the Goulburn River in Australia for 

three years. As a result of their inverse modelling efforts, they found that the soil properties 

changed, with r becoming less significant and s and Ks becoming more significant. In 

addition to soil texture, the aforementioned authors state that the amount of macrospores 

generated by roots or fractures, the kind of vegetation, organic matter, and human activities 

are all taken into account when calculating calibrated hydraulic parameters. Gupta et al. 

(2012) provided software that gives numerical solution to the Richards' equation for 

unsaturated water and the advection-dispersion equation for solute transport based on the 

Fickian approximation. Soil water flow in one dimension is described by Hydrus-2D, which 

uses numerical solutions to Richard's equation. 
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where,   is the volumetric soil water content (m
3
m

-3
), t is time (s), K  is the unsaturated soil 

hydraulic conductivity (mms
-1

), h is water pressure head (L),   is angle between the flow 

direction and the vertical axis (for vertical movement of water in soil 0 , for horizontal 

movement 90  and 900   is for other direction). S is the roots water uptake term 

(L
3
L

-3
T

-1
) and x is spatial coordinate (L) (positive upward). Roots water uptake  S  term in 

equation 2.38) is determined as the volume of water taken from the soil by plants per unit 

volume per unit time. In this model, S  is based on Feddes relationship and defined as: 

pShhS )()( 
                                                                                                                    

(2.33) 
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where, )(h  is water stress function and 
pS  is water absorption potential. Over the years, 

Hydrus-1D model has been successfully applied in various studies worldwide for predicting 

soil moisture content and water movement under different conditions (Chen et al., 2014; Da 

et al., 2015; Gabiri et al., 2018). Honar et al. (2011) analysed water flow and infiltration in a 

sprinkler irrigation system to depth using the HYDRUS-1D model; their findings revealed 

that field capacity could be maintained with irrigation and flow rate. Corn farming in France 

was simulated using this program, and it was utilized in another study to model agricultural 

water and soil conditions using actual data. Hydrus-1D is a physically based model, hence it 

requires data that can be gathered through experiments, such as weather data for surface 

boundary conditions, soil physical conditions, and physical parameters (saturated hydraulic 

conductivity and a soil water retention curve) (Honari et al., 2017; Simunek et al., 1999; 

Tinet el at., 2015). Specifically, Hydrus 1D was chosen for this investigation due to its 

reliability and the fact that the study's input parameters were all directly related to estimating 

soil moisture. 

2.5 Temporal and Spatial Soil Moisture Measurements 

The CRNS is one instrument that can be used to safely and effectively track soil moisture 

levels over time. Prior use of observed neutron intensities to enhance predictions of soil 

moisture profiles using a land surface model were limited by the fact that the model's 

parameters were calibrated based on known soil moisture conditions (Han et al., 2015a; 

Rosolem et al., 2014; Shuttleworth et al., 2013). According to Köhli et al. (2015), the 

cosmic-ray neutron probe can bridge the gap between remote sensing and point-scale 

measurements by delivering average soil moisture readings over a 240m radius as the 

maximum footprint. Soil moisture sensors come in a wide variety (Figure 2.6), but the 

cosmic-ray probe is a novel method for measuring integral soil moisture on a field or small 

catchment scale (Zreda et al., 2008, 2012). Soil moisture at the field scale may be accurately 

measured using cosmic-ray neutron sensors in a wide range of environments and areas (e.g. 

Bogena et al., 2013; Franz et al., 2012a; Hawdon et al., 2014; Rivera Villarreyes et al., 

2011). They could also be used to check the accuracy of data collected by remote sensing 

(Crow et al., 2012; Dong et al., 2014; Hornbuckle et al., 2012). Information on soil moisture 

is helpful in many fields, including hydrology and agriculture. Many studies have shown that 

soil moisture data may be extrapolated from satellite imagery (Albergel et al., 2012; Njoku et 

al., 2003). 
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Figure 2.6: Soil moisture sensors (Bogena et al., 2006) 

Because hydrogen atom is the most effective slowing agent for fast neutrons, the amount 

of fast neutrons detected by the probe can be related to soil moisture. The neutron counts 

detected by the probe are converted to volumetric soil moisture ( v ) using the equation from 

Hawdon et al. (2014), 
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where, 0N  is the neutron intensity over dry soil, and corrN  is the corrected neutron counts. 

The neutron counts are corrected for air pressure, atmospheric water vapour, and incoming 

neutron intensity using the method outlined in Zreda et al. (2012).  

2.5.1 Penetration Depth in the Soil 

The probed soil layer's thickness is a significant advantage of the CRNS method over most 

remote sensing products. Cosmic-ray neutrons can pass almost undetected through the first 

decimetres of soil, whereas electromagnetic signals interact in the upper 0-5 cm. Franz et al. 

(2012b) showed that the effective representation of the penetration depth, )(z , is a 

reciprocal function of soil moisture, but it is unclear how it varies with the distance from the 

probe. The cosmic-ray neutron probe has substantial potential; unfortunately, the effective 

measuring depth for the majority of soils is less than 30 centimetres, necessitating depth 

scaling to reflect the whole root zone. Soil moisture has a negative relationship with the 

http://onlinelibrary.wiley.com/doi/10.1029/2008WR006829/full#wrcr11716-bib-0026
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effective depth of measurement, which is defined as the depth of soil from which 86% of 

neutrons counted originates from as shown in (Equation 2.35). The effective depth was 

observed by Zreda et al. (2008) to vary non-linearly from 12 cm (wet soil, water content 0.40 

m
3
m

-3
) to 76 cm based on MCNPX simulated results (dry soil, the water content of 0). 

0829.0

8.5




bd

z

                                                                                                    

(2.35) 

where, bd
 
is the dry bulk density of soil (gcm

-3
),  is the weight fraction of lattice water in 

the mineral grains and bound water (very small),   is volume of soil moisture and z  is 

effective depth (cm). The effective measurement depth (
z ), an important factor for depth 

scaling, varies with changes in volumetric water content. The relationship determined by 

Franz et al. (2012b), with the inclusion of soil organic matter, is 
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(2.36) 

Here, integrating neutron counts over one hour and averaging soil moisture over the previous 

twelve hours helps to smooth out the data signal (Zreda et al., 2012). To verify the cosmic-

ray neutron probe, six (6) randomly chosen locations within the footprint had gravimetric soil 

samples obtained from a depth of 0-30cm cm on May 30, June 6, June 9, and August 9, 2018. 

The method outlined by Kohli et al. (2015) was utilized to compute a distance-weighted 

average.  Using data collected over the course of two years from a prairie pasture in central 

Saskatchewan, Canada, Peterson et al. (2016) assessed the efficacy of depth-scaling 

approaches for determining field-scale volumetric water content and moisture variations. The 

scientists found that employing cosmic-ray neutron probe data was the most accurate way for 

assessing soil moisture in the root zone. 

2.5.2 Calibration of Cosmic Ray Neutron Sensor 

Cosmic ray probes have become increasingly popular in recent years for measuring soil 

moisture. Currently, there are a number of approaches that can be used to estimate soil water 

content from fast neutron fluxes, including (i) a site-specific shape-defining function (N0 -

method) (Desilets et al., 2010), (ii) a universal calibration function (hmf-method) (Franz et 

al., 2013b), and (iii) a cosmic-ray Soil Moisture Interaction Code (COSMIC operator). 

Chrisman and Zreda (2013) created a universal calibration function to avoid the necessity 

for local calibration campaigns in the event of logistical or practical issues and to permit 

measurements with a cosmic-ray probe in motion. Soil water content can be estimated with 
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computational simplicity using the site-specific -method, which needs substantial soil sample 

for determining a single calibration parameter. 

2.6 Models for Biomass and Yield Prediction 

Accurate estimates of terrestrial biomass, crop growth, and yield are necessary for global-

scale modelling of climate-related issues such as potential food production shortfalls (Tan & 

Shibasaki, 2003), drought risk (Alcamo et al., 2007), carbon balance (Bondeau et al., 2007), 

or greenhouse gas emissions (Stehfest et al., 2007). According to Nicole Frost (2014), rising 

winter temperatures and carbon dioxide levels may result in enhanced pasture growth rates; 

nevertheless, total annual productivity is anticipated to drop as a result of diminished water 

availability. Roger Blench and Florian Sommer (2015) reported that population growth in 

many semi-arid countries, along with the development of innovative irrigation methods, is 

pushing arable farming into hitherto unfeasible peri-urban and peri-rural settings. 

Consequently, this place more stress on pastoralists, foragers, and the vegetation of 

rangelands. Pennisetum purpureum grass regularly generates up to 10-12 t/ha dry matter 

under rain-fed conditions, making it a popular choice for the cut-and-carry method of feeding 

grass to stall-fed cattle in eastern Africa's smallholder dairy business (Boonman, 1993). 

Although major questions have been raised concerning the long-term effects of 'overgrazing,' 

the short-term effects of severe pressure on rangelands can cause them to produce insufficient 

biomass for livestock and wildlife over time. 

a) CropSyst 

CropSyst was designed as a tool for analysing the impacts of climate, soil, and 

management on cropping systems over a number of years and crops (Stöckle et al., 2010). 

The model takes into account daily and hourly time steps and spans multiple crop cycles. For 

simulating a wide range of management and meteorological scenarios, CropSyst is a cropping 

system model. All aspects of the environment's ecosystem, including water, nitrogen, and 

soil, can be accounted for in this model. The usefulness of a model as a research instrument 

depends on its capacity to make accurate predictions. 
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Figure 2.7: Schematic representation of coupled VIC and CropSyst model (Malek et al., 

2017) 

b) VIC-CropSyst 

The tightly coupled dynamics between hydrologic and biogeochemical processes, as well 

as producer decisions, may be simulated in rain-fed/irrigated and dry land agricultural regions 

with the fully integrated VIC-CropSyst model. As shown in Figure 2.7, model integration can 

look like what was reported by Malek et al. (2017); in this case, VIC replicates all hydrologic 

processes apart from transpiration, which is provided by CropSyst. In this application of VIC, 

root zone dynamics are captured by employing a large number of thinly spaced soil moisture 

layers. In addition to simulating evaporation losses from bare soil and canopy-interception, 

VIC has been tweaked to model the evaporation of raindrops as they fall, based on the 

technologies used to collect them. How much rainwater really reaches crops and how much is 

lost to evaporation, surface runoff, and deep drainage can be estimated more accurately with 

this information. VIC-CropSyst not only models crop yields, but also carbon and nitrogen 

fluxes. 

c) AquaCrop 

The Food and Agricultural Organization (FAO) created AquaCrop, a crop water 

productivity model, after consulting with experts from top universities and research facilities 

as well as international governments. Since water is often the limiting component in 

agricultural productivity, the AquaCrop model was developed by Steduto et al. (2009) as a 

means of simulating the yield response of herbaceous crops to changes in water availability. 
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Using the conservatism of biomass water productivity, AquaCrop bases crop growth and 

yield on the quantity of water lost during photosynthesis (or biomass water use efficiency). 

2.6.1 Crop Yield Prediction 

This is the methodology of predicting crop yields (at various scales: from farms to 

counties, to countries and to global scale) prior to harvest. 

 

 

 

 

 

  

 

Figure 2.8: Schematic of the yield prediction workflow 

a) Growing Degree Days 

According to the International Association of Hydrological Sciences, "growing days" are 

"the period (in days) during the year when precipitation (P) exceeds half the potential 

evapotranspiration (PET) plus a period required to evapotranspire up to 100 mm of water 

from excess precipitation considered stored in the soil profile" (FAO, 1978). Agronomists use 

a concept called Growing Degree Days (GDD) to describe the correlation between 

temperature and plant growth (Gibson, 2015). The range of 50F (1
o
C) to 86F (30

o
C) is ideal 

for maximum growth (3
o
C). Fischer et al. (2000) noted that during the growing season, the 

average daily temperature must be above 5°C; if temperatures fall outside of this range, it has 

been seen that growth rates decline. Using heat accumulation, GDD is a heuristic 

phenological approach for estimating future growth rates. Calculating GDD is: 

baseT
TT

GDD 



2

)( minmax

                                                                                              
(2.37) 

where, maxT indicate the maximum daily temperature (86F or 3
o
C) when temperature exceed 

beyond 86◦F, minT indicate the minimum daily temperature (50F or 1
o
C) when temperature 

falls below 50F (1
o
C), baseT  indicate  the base temperature required to trigger the optimum. 

b) Palmer Drought Severity Index 

The Palmer Drought Severity Index (PDSI) measures the availability of moisture after 

precipitation and recent temperature changes. The PDSI has also been used to perform spatial 

soil, and temporal correlations analysis (Fuchs, 2015).  
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2.6.2 Agricultural Production System Simulator 

Sub-models (or modules) can be linked together in Agricultural Production Systems 

Simulator (APSIM), a computer application that simulates agricultural systems (McCown et 

al., 1996). Daily rainfall, maximum and minimum temperatures, solar radiation, and 

measurable soil physical properties for different soil strata are required by APSIM. The bulk 

density, the saturated water content, the field capacity, and the wilting point are all examples 

of such characteristics. The dynamic, daily-time-step modelling available in APSIM, which 

combines biophysical and managerial modules into a single engine to mimic cropping 

systems, made it the ideal choice for this research. Keating et al. (2003) created APSIM-

wheat to mimic biophysical processes in agricultural systems, particularly when the economic 

and ecological ramifications of management approaches in the face of climate hazards are of 

concern. 

2.6.3 Model Parameterisation and Calibration 

Effective model calibration and evaluation calls on complete and trustworthy data sets. 

Modellers have specified priorities or minimal data needs for model calibration and 

evaluation, but ideal data would span various aspects of the soil-plant-atmosphere continuum 

(Hunt & Boote, 1998). Thomas et al. (2013) claim that while consumers may have difficulty 

with model selection, model parameterization is significantly more difficult. Most grazing 

land models are empirically parameterized in practice. Half of users who employed crop 

models relied on trial and error to determine the best parameter values, which they did on 

average after three tries. The use of iteration to choose parameters that are suitable for both 

the calibration and validation data is common even among those who profess to keep the two 

datasets separate (Seidel et al., 2018). Based Independent observations of soil hydraulic 

characteristics, as well as site-specific measurements of variables including bulk density, 

organic carbon, C/N ratio, and pH, are used to parameterize the model for each data set. 

However, estimates for other model parameters necessitated actual data from simulation or 

experiment. Ma et al. (2015) discovered that optimizing net ecosystem exchange, gross 

primary production, ecosystem respiration, and evapotranspiration across 12 experimental 

sites in Europe produced the best results when compared to parameters obtained from 

selected sites when calibrating the Pasture simulation model. 

2.7 Detecting and Quantifying Land Use and Land Cover Change 

Teixeria et al. (2014) argue that analysing land use change through time can help explain 

what's behind the shifts and what might be causing them. Land-use change in pastoral 

ranches next to the Maasai Mara National Reserve has been blamed by Ogutu et al. (2009) 
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for the dwindling populations of various species of wild animals, including giraffe, 

waterbuck, and impala. Land usage is the practice of putting one's land to various uses 

(Comber, 2006). Land use creates a causal link between land cover and human actions in the 

natural world. Transferring data on land cover and land use from producers to consumers 

provides an important starting point for "land" analysis. What people do, where they do it, 

and what they put into a specific sort of land cover is what we call "land use," and it's the 

relationship between people and their environments. When defining cover characteristics for 

an area substantially larger than the sampled area, sampling is often used. Samples should be 

collected carefully to ensure they are representative of the entire habitat and devoid of bias. In 

this study, a rectangular quadrate frame (50cm x 50cm) was employed to define the sampling 

region; however, a quadrate can also be a fixed area inside a site. The most common 

quantitative sampling techniques are the segment or quadrate method and the transect 

approach. The quadrate method was selected since it allows the user to set a specific area for 

analysis. For this purpose, it is necessary to use an experimental design that allows for the 

random placement of the frame or permanent quadrat. Surveying smaller quadrates is 

considerably more manageable than larger ones, but the results may not be as trustworthy. 

Extrapolating or projecting to the actual size, or making use of remote sensing technology, 

are all viable options for determining the optimum size of the quadrat. However, more time 

and effort is needed to thoroughly analyze the larger quadrats. Consequently, it is necessary 

to strike a balance between the theoretical and the actual. 

2.7.1 Crop Area Estimation 

The estimation of crop area is the "backbone" of agricultural activity. Not only that, but it is a 

vital factor in yield forecasting. By collecting data over wide areas at a high rate of revisit, 

remote sensing can significantly contribute to giving a current and accurate picture of the 

agriculture industry (Atzberger, 2013). For effective agricultural planning and decision-

making, it is essential to have a reliable and timely estimate of crop acreage. Goldewijk et al. 

(2011) found that the proportion of land used for farming increased from 5.9% to 10.6% 

between 1900 and 2000. Forests and grasslands have historically been the principal targets 

for agricultural conversion (Carmona & Nahuelhual, 2012; Mao & Cherkauer, 2009). There 

are primarily three remote sensing methods that can be used for estimating crop areas: 

a) Pixel counting is the quickest and easiest way, but it might produce inaccurate findings for 

a number of reasons. This area estimation bias can be the result of the same omission errors. 

b) Regression, calibration, and estimation of tiny regions - These techniques are based on a 

combination of remote sensing data and accurate sample information. The regression 
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estimator of survey estimates is a widely used technique for estimating the mean of a variable 

Y known for n samples using an auxiliary variable X known for all n components of the 

population and connected with Y (Carfagna et al., 2005; Latham 1981/82/83). The calibration 

estimator is a statistical technique family in which the erroneous pixel-counting estimator is 

adjusted using a confusion matrix computed on samples. When the sample size is too small to 

provide reliable results, small area estimate can be used to extrapolate the results to a larger 

population using supplementary data (Carfagna et al., 2005). 

c) Surveys of area frames. The area frame can benefit from satellite imagery in a few 

different ways: the imagery can help define the sample unit for stratification; and ii) the 

imagery can be used as visual documentation for ground surveys and quality control. Gallego 

(2008), in particular, underlined the cheap cost and efficiency of stratification based on 

coarse photo-interpretation of satellite pictures. 

2.7.2 Ground Survey 

"Ground truthing" refers to the practice of using primary sources to verify and validate the 

results of a remote sensing study, and is commonly employed in this field. However, this 

practice rarely has an immediate bearing on how we categorize landforms based on satellite 

or airplane imagery. Observations and maps made in the field are the backbone of the time-

honoured practice of conducting field surveys to learn about the biological features of a given 

piece of land. 

2.7.3 Area Frame Sampling 

A sample frame can be a list or a map that details every member of the population of 

interest (Perry, 1979). Each member of the population must be able to be positively 

identified; hence a map or list of that nature is necessary. Persons from the population whose 

characteristics are being studied make up the sampling units. Most commonly, a geo-

information system is used to combine many sets of frame components into a single sampling 

frame (GIS). Among the most important aspects of an efficient area frame sampling (AFS) 

are its durability and its aesthetic appeal. "divide the complete area to be surveyed into N 

small blocks (Segments) without any overlap or omission, additionally choose a random 

sample of n small blocks, and acquire the needed data for reporting units of the population 

that is in the sample blocks" is how area frame sampling is described (Madana, 2002). When 

conducting a probability survey with a specified probability of selection, Cotter and Tomczak 

(1994) stressed the importance of area frames to achieve full coverage and accurate 

representation of geographical areas. Unless the population rapidly grows in areas where this 

frame does not apply, it will not become out-dated anytime soon. 
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2.8 Satellite Imagery Data 

2.8.1 Project for On-Board Autonomy - Vegetation (Proba V) 

PROBA-V was launched on May 6, 2013, to fill the void in space-borne vegetation 

measurements between the Sentinel-3 satellites, the first of which has been in orbit since 

February 16, 2016, and the second of which was launched on March 30, 2018, and SPOT-

VGT, which operated from March 1998 to May 2014. A swath width of 2295 kilometres is 

possible because to the VEGETATION instrument's 1020-degree field of view. At this swath 

width, we can guarantee daily coverage of 90% of the Earth and every two days we'll cover 

the entire planet. The primary camera looks out over a 517- kilometre radius with a resolution 

of 100 meters, providing five-day worldwide coverage at a minimum. By comparing Proba-V 

(PV) NDVI with VGT NDVI for operational crop monitoring and yield forecasting activities, 

Meroni et al. (2015) assessed producer quality, offering some level of user or fitness for 

assessment purpose. The scientists performed an analysis of paired observations obtained by 

the two instruments during the overlap time while both satellite systems were active. Between 

late October 2013 and late May 2014, there was a period of overlap that coincided with the 

time when North African countries track crop growth (January to May) to make accurate 

yield predictions for major grain crops (barley, soft and durum wheat). The authors found the 

largest discrepancies in the anomalies maps, where a comparison of SPOT-VGT and 

PROBA-V's agreement coefficients (ACs) showed that while no significant systematic 

differences exist, there is significant scatter due to unexplained unsystematic variability (AC 

= 0.55, ACs = 0.98, ACu = 0.56). When the NDVI collected across cropland is averaged by 

administrative units to construct temporal profiles, a high degree of agreement is shown 

between the sources (AC = 0.94), suggesting that the ad hoc variability is greatly decreased. 

Finally, the scientists found that the spatial quality differential between the two sensors 

(PROBA-V offering more geographical detail) significantly impacted yield prediction in an 

arid location with rapid transitions between agriculture and desert, despite having the same 

nominal spatial resolution. A total of four spectral bands can be observed using PROBA-V. 

Based on the research of Francois et al. (2014), the spectral centres of BLUE (0.463 m), RED 

(0.655 m), NIR (0.837 m), and SWIR (1.603 m). Resolutions for the VNIR and SWIR 

channels range from 100 to 180 meters at nadir to as much as 350 meters and 660 meters at 

the swath's edges, respectively. 
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Table 2.2: PROBA-V spectral, radiometric, and geometric characteristics, Lref refers to the 

Top-Of-Atmosphere (TOA) irradiance at the respective spectral band, Geometric mean 

accuracy values obtained over the period 16 December 2016-15 December 2017. FWHM = 

Full Width at Half Maximum, SNR = Signal to Noise Ratio 

Band name Centre wavelength 

(µm) 

Spectral range        

@ FWHM (µm) 

SNR@ Lref (Wm
-2

 sr
-1

 

µm
-1

) at 300m 

resolution 

BLUE 0.464 0.440 - 0.487 177@111 

RED 0.655 0.614 - 0.696 598@110 

NIR 0.837 0.772 – 0.902 574@106 

SWIR 1.603 1.570-1.635 720@20 

Radiometric Performance 

Absolute accuracy (%) < 5 

< 3 

< 3 

Inter-channel accuracy 

Stability (%) 

         Geometric Performance 

Mean Geo-location 

accuracy (standard 

deviation (m) 

BLUE: 77.6 (92.6) 

RED: 73.2 (79.0) 

NIR: 69.2 (77.9) 

SWIR: 71.4 (78.7) 

 

i) Segment Products (Level 1C and Level 2A, Level 3, Both Consisting of TOA and TOC 

Reflectance’s)  

Raw segmented observations, along with calibration data, can be found in the Level 1C 

product, whereas projected segment data can be found in the Level 2A (L2A) goods. P-

products was the term used to describe these later data sets during the time of SPOT-VGT. 

These products include cloud, shadow, and snow/ice filtered observations for TOA 

reflectance on a daily basis (S1, available at all resolutions) and on a multi-daily basis (S5 for 

100 m and S10 for 300 m and 1 km). Top-of-Canopy (TOC) reflectance and Normalized 

Difference Vegetation Index (NDVI) data are additionally corrected for air reflectance factors 

such aerosols and gaseous absorption. The S-products of SPOT-VGT synthesized back in the 

day. The next processing stages that are carried out to generate the Level-1C result are shown 

in the upper portion of figure 2.9, which contains the Level 1 algorithm and data (the "Level 
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1 processor"). Geometric processing and radiometric processing are the two basic types of 

processing. 

2.8.2 Project for On-Board Autonomy – Vegetation (PROBA-V) Data Products 

The PROBA-V products are similar to the ones of SPOT-VGT in terms of file structure and 

comprise the following elements:  

                                                                      Level 1 Processor 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

                                                                      Level 2 Processor 

 

 

 

 

 

 

 

 

                                                                    Level 3 Processor 

 

 

 

 

 

 

 

                                        

                                                                                                                           
Figure 2.9: PROBA-V product processing chain flowchart 
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2.8.3. Geometric Processing 

Using the Level 1A raw and uncompressed data, the latitude and longitude of each 

observed pixel were calculated and used to geo-locate each satellite position. Satellite 

positions and velocities are interpolated along each scan line using a model of propagation 

across space. Utilizing the geometric Instrument Calibration Parameters (ICP) file enhances 

the precision of the geo-location (figure 2.9). The ICP file details how the eclipse's length and 

the Sun's beta angle affect the detector's field of vision. The viewing and solar zenith angles 

(VZA and SZA), which are necessary for further processing, are also computed by the 

geometric processing model. Data at Level 1B is the result of the geometric processing. 

Sterckx et al. (2014) offer additional information regarding the geometric processing. 

2.8.4. Radiometric Processing 

Radiometric processing changes the number of digital numbers in a certain spectral band 

(DN) into physical values for TOA reflectance. As a first step, the DN value is calibrated to 

account for detector non-linearities, dark currents, and pixel-to-pixel variations. Second, the 

band-specific calibration coefficients from the radiometric ICP file are used to convert the 

numbers to sensor radiance L (Wm
-2

sr
-1

m
-1

). At last, we transform the TOA radiance L for a 

specific spectral band into reflectance at that band by using: 

)(

2

sO

TOA
CosE

Ld
R








                                                                                                          (2.38) 

With RTOA the obtained TOA reflectance value (-), d the Earth – Sun distance (AU), Eo the 

mean exo-atmospheric irradiance at the specific spectral band (Wm
-2

μm
-1

), with values from 

Thuillier et al. (2003), and )cos( s the solar zenith angle (o). The outputs of the radiometric 

processing are the Level 1C data.  

a) Level 2 Algorithm and Data  

The Level 1C data are used as input for further processing in the Level 2 processor, which 

consists of the following steps, and the compositing procedure for the 300m and 1km 

products is slightly different from the Level 2 procedure in certain steps. 

i). Mapping and SWIR mosaicking  

ii). Snow/ice detection  

iii). Cloud and cloud shadow detection  

iv). Atmospheric correction  
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2.8.5 Mapping and SWIR Mosaicking 

The Level 1C data is projected onto a World Geodetic System (WGS 84) geographic 

latitudes/longitudes grid according to a method developed by Riazanoff (2004). Pixel-specific 

Level-1 (p, l) coordinates are reconstructed from Level-2 (x, y) coordinates using an inverse 

model, where x and y represent longitude and latitude, respectively; p and l represent the 

pixel-in-line and line number, respectively; and l is the line number. 

2.8.6 Cloud and Cloud Shadow Detection 

When clouds are present, satellite measurements of the land's surface are hindered and 

cannot be used to retrieve the land's original properties. Thus, appropriate cloud screening is 

crucial for pre-processing the various value-added products. It has been found through 

extensive research and user feedback that the PROBA-V cloud identification system in 

Collection 0 has various flaws. Collection 0 uses a static threshold technique for the BLUE 

and SWIR spectral bands. Among the method's key flaws was its tendency to incorrectly 

detect clouds over bright surfaces like deserts and salt lakes, as well as its tendency to 

incorrectly classify thick ice clouds as snow/ice. A new algorithm for PROBA-V 

reprocessing was created and deployed to address these constraints (Collection 1). Collection 

1's updated and functional cloud detection algorithm overcomes the major shortcomings of 

Collection 0's by employing a more thorough and complex battery of cloud testing. A 

supervised training of a classification method was created to take the role of the defunct 

Collection 0 algorithm; 

i). Contextualization maps are constructed with high-resolution surface albedo data. 

ii). A Comprehensive battery of threshold tests and similarity checks determines whether 

a pixel should be labelled "cloud" or "clear." 

  

 

 

 

 

 

Figure 2.10: Flowchart of the collection 1 cloud detection algorithm 

2.8.7 Atmospheric Correction 

Surface reflectance and scattering, absorption, and multiple reflections inside the air 

column underneath the satellite combine to provide the TOA reflectance observations at 

Level 2A. (clouds, gases, aerosols). According to Rahman et al. (1994, pp. 123-143) the 
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directional TOC reflectance values are calculated using the Simplified Model for 

Atmospheric Correction (SMAC) (Level 2B data). This model extrapolates the TOA 

reflectance to the TOC reflectance using data on water vapour, ozone, and surface pressure. 

The humidity is courtesy of the European Centre for Medium-Range Weather Forecasts 

(ECMWF). The Numerical Weather Prediction (NWP) model offered by MeteoServices is bi-

linear in space and linear in time. The Centre d'Études Spatiales de la Bio-sphère (CESBIO) 

climatology is utilized for ozone. It was calculated using data collected by the Total Ozone 

Mapping Spectrometer (TOMS) over a period of 10 years. By utilizing the Global Land 

Surface Digital Elevation Model (GLSDEM), a height-to-pressure conversion formula was 

proposed by Plummer et al. (2003). By comparing the TOA NDVI and the SWIR/ BLUE 

TOC reflectance ratio, the aerosol optical thickness (AOT) can be estimated empirically. 

Only pixels with enough vegetation (NDVI > 0.2 and TOC SWIR > 0.4) can apply this 

aerosol retrieval method; for those that do not, a straightforward AOT, as a function of 

latitude is applied instead (Berthelot et al., 1997). 

2.9 Sentinel 2A 

When a high temporal resolution is required, agricultural monitoring and applications 

commonly make use of satellite pictures with a high temporal frequency (daily) but a low 

spatial resolution (>250m). Images of Earth's surface are taken by Sentinel-2A/MSI in 13 

spectral bands at spatial resolutions of 10 meters (20 meters), 30 meters (60 meters), and 60 

meters (200 meters) (Drusch et al., 2012). The GDD-based technique proposed by Franch et 

al. (2015) is utilized as a proxy to forecast an NDVI peak utilizing the historical link between 

NDVI and GDD, hence improving peak NDVI estimate. The GDD is computed by 

subtracting the average daily maximum maxT  and minimum temperatures minT  from a base 

temperature. Large-scale applications of remotely sensed satellite data for crop area and yield 

estimation have been adopted in both the United States and the European Union (Latham, 

1981-83; Wigton et al., 2009). 
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Table 2.3: Technical characteristics of Sentinel 2 

“Launched 2014 

Instruments on 

board 

Sentinel-2 is a polar-orbiting, multispectral high-resolution imaging 

mission 

 

 

 

 

Processing 

 

 

 

Level 1 Pre-

processing 

includes: 

 

a) Radiometric corrections: stray-light/crosstalk 

correction and defective pixels‟ exclusion, de-

noising, de-convolution, relative and Level 1 

image processing includes: absolute calibration  

b) Geometric corrections: co-registration inter-

bands and inter-detectors, ortho-rectification. 

 

 

 

Level 2 image 

processing 

include: 

c) Cloud screening  

d) Atmospheric corrections: including thin cirrus, 

slope and adjacency effects correction 

a) Geophysical variables retrieval algorithms: e.g. 

fAPAR, leaf chlorophyll content, leaf area index, 

land cover classification 

Level 3 provides 

spatio-temporal 

synthesis 

Simulation of cloud corrections within a Level 2 

image 

Pixel size < 1 ha MMU (Minimum Mapping Unit) fully achievable with 10 m 4 

bands at 10 m, 6 bands at 20 m and 3 bands at 60 m spatial resolution 

(the latter is     dedicated to atmospheric corrections and cloud 

screening). 

Spectral bands Optical payload with visible, near infrared and shortwave infrared 

sensors    comprising 13 spectral bands) 0.4-2.4 µm (VNIR + SWIR). 

Scene size Swath width of 290 km. 

Data 

characteristics 

Revisit time of five days at the equator (under cloud-free conditions) and 

2–3 days at mid-latitudes. 

Info https://earth.esa.int/web/sentinel/user-guides/sentinel-2-

msi/resolutions/spatial” 
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2.9.1 Normalized Difference Vegetation Index 

The NDVI, or Normalized Difference Vegetation Index, is a common index used to 

generate a green image (relative biomass). When it comes to anticipating seasonal shifts in 

ET and soil moisture status, NDVI has been found to be quite helpful, as was mentioned by 

Nemani et al. (1989). Using a multispectral raster dataset, this index takes use of the 

difference between the red band absorptions of chlorophyll pigments and the high reflectivity 

of plant components in the near infrared (NIR) band. The following formula is used to 

calculate it using the measured intensities of the red (R) and near infrared (NIR) spectral 

regimes. 

 
 rednir

rednirNDVI









                                                                                                        

(2.39) 

where, nir
 

indicate the near–infrared band reflectance, red
 

indicate the red band 

reflectance, red = Intensity/brightness of reflected light in the red filter (ca. 0.6–0.7 µm), nir

= intensity/brightness of reflected light in the near infrared filter (ca. 0.8–0.9 µm). 

SENTINEL - 2A Band 3 (red band) and Band 4 (green band) reflectance data are used to 

calculate the NDVI values in bands 4 and 8 of the Sentinel-2A MSI camera. Sentinel is made 

up of several different missions, each of which is equipped with a different suite of 

instruments for monitoring our planet, such as radar and multi-spectral imaging devices. 

Agriculture is the focus of Sentinels 1 and 2, while the other missions (Sentinels 3, 4, and 5) 

monitor things like ocean and land colour, air quality, and temperature (Sentinel 4-5). 

2.10 Net Primary Productivity 

The rate at which carbon dioxide is turned into biomass (all plant life forms) each year 

is known as the net primary productivity (NPP). The rate of production of goods or services 

in an economy or ecosystem is its productivity, and it is quantified by the amount of material 

produced per unit of time and space. Above- and below-ground biomass contributes to NPP 

(plant shoots and roots). The annual net primary production (NPP) of rangelands varies 

widely in space, from practically nothing to about 3,000 gm
-2

 (Running et al., 2004). Primary 

productivity on rangelands is primarily affected by a number of different types of change, 

including (but not limited to) i) land-use change (including soil-related changes), ii) climate 

change (precipitation and temperature changes), iii) changes in atmospheric composition 

(CO2), and iv) changes in biodiversity. When the amount of precipitation falls and the 

temperature rises, as it typically does, NPP falls, as stated by Sala (2001). Precipitation may 

increase or decrease in many parts of the world as predicted by climate change models. 
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2.11 Model Sensitivity Analysis 

The output of a simulation model can be subjected to a Sensitivity Analysis (SA) in order 

to learn more about how different changes to the model's input parameters affect the accuracy 

of its predictions. One of the simplest ways to express local sensitivity is through the first-

order partial derivatives of the output to the factors. Define a model y = f(x), where y is the 

output of the model; x is factor of the model. The sensitivity of the factor (Si) is defined as: 

xi

yi
S i






                                                                                                                              
(2.40) 

where, i  is the thi  factor of the model. 

Instead of model output, y the model error is used such as Root Mean Squared Error or Mean 

Absolute Error). Higher value of Si indicates higher sensitivity of the factor and is called 

Sensitivity Index (SI). Local SA also termed the “one factor at a time” (OAT) or 

deterministic approaches quantify the exact local response of output (Y ) to a particular input 

factor ( ix ) at a selected point ( ox ) within the full input parameter space for the model. The 

most common form of a local sensitivity is: 
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(2.41) 

where, ),.....1( Ii  , and I indicate the number of total input parameters. The local sensitivity 

index measures the partial derivatives of Y with respect to ix  at point 0x . The method of 

sensitivity auditing (Saltelli et al., 2013; Saltelli & Funtowicz, 2014) involves doing a 

sensitivity analysis in order to ascertain the applicability and credibility of model-based 

reasoning employed in the formation of policy (European Commission, 2015). Touhami et al. 

(2013) report that measurements of weather data and soil parameters, two common types of 

inputs to models, show substantial temporal and spatial variability. A plethora of research has 

relied heavily on sensitivity analysis to zero in on the best set of calibration parameters. Due 

to the location-specific nature of all experiments and the mostly empirical nature of the 

models' descriptions of certain processes, there is a relationship between calibrated 

parameters and experimental sites (Behrman et al., 2014). 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 The Study Area 

3.1.1 Maasai Mara National Reserve Rangeland and Ecosystem 

The Maasai Mara rangeland and ecosystem (Figure 3.1) is located in southwest Kenya (1
0 

29'35"N and 035
o
 08' 57"W. The experimental sites sample were represented by the 

following coordinate points (1° 29' 35.9520"S, 35° 8' 57.0480"E), (1° 33' 32.004"S, 35° 

14' 11.904"E), (1° 27' 10.476"S, 35° 4' 19.74"E) and (1° 32' 17.988"S, 35° 2' 10.14"E) 

within the MMNR. The total area of the MMNR is around 1,530 sq. km, although less 

than 10% of that is protected land inhabited by the agro-pastoral community and 

conservancies. The MMNR rangeland ecosystem, located at an elevation of roughly 

1,600 meters above sea level, consists of undulating savanna/woodland that is 

intersected by multiple drainage lines and divided by the Mara River (Olson et al., 

2000). Dense woodland, bush land, grassland, group ranches, agricultural fields, urban 

areas, and marsh are all found in the Mara River Basin (MRB) (Dessu & Melesse, 

2010, 2012; Mati et al., 2008). Rainfall in MRB is highly variable because to the 

movement of the Inter-Tropical Convergence Zone (ITCZ). The ITCZ's southbound 

migration causes the short rainfall from October to December, whereas its northward 

migration provides the long rainfall from March to May. The beginning, length, and 

intensity of rainfall in the MRB are all influenced by yearly fluctuations in Indian 

Ocean sea surface temperatures, which in turn are affected by El Nino southern 

Oscillation and La Nina episodes (Dessu et al., 2007, 2013). Rainfall patterns are 

caused by the monsoonal winds of the Inter-Tropical Convergence Zone (ITCZ) 

(Ongoma & Chen 2017; Yang et al. 2015). The majority of the region's precipitation 

comes during the summer monsoon, but the impact of climate change on this pattern is 

still unclear (Morgan et al., 2015). There is a gradient from northwest to southeast that 

results in a temperature range of 12 to 28
0
 degrees Celsius and an annual rainfall 

average of 800 to 1,200 millimetres. There are two main dry periods: one lasting from 

about mid-June to about mid-October, and the other lasting January and February. 
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Figure 3.1: Maasai Mara National Reserve rangeland ecosystem 

3.1.2 Naivasha Cropland and Ecosystem 

The geographical location of Naivasha Sub County lies in the floor of the Great Rift 

Valley and borders five other sub counties namely: - Gilgil to the North, Kajiado and Kiambu 

to the East, Narok to the south and North Kinangop to the North East. The experimental sites 

were located within the following sample coordinate points (0° 35' 59.28"S, 36° 33' 

59.76"E), (0° 45' 13.68"S, 36° 11' 27.24"E), (0° 38' 38.04"S, 36° 28' 45.48"E), (0° 44' 

12.12" S, 36° 27' 3.6" E), (0° 38' 38.148" S, 36° 28' 45.48" E) within Naivasha Sub 

county which covers an area of 1,685.8 km
2
. The sub county is located in the medium 

potential agro-ecological zone (Zone 111). The annual rainfall of the area has been 

determined to be between 600 - 700mm with an annual average of 650mm. Bimodal rainfall 

pattern are made of short rains that falls between October to December and long rains 

between March to May. The altitude ranges between 1520 and 2700 metres above the sea 

level. Lake Naivasha lies in the basin. Again, the climate within Lake Naivasha basin is 
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heterogeneous across locations and is dominated by semiarid conditions, while cooler, but 

humid conditions can be found upstream in the higher altitude areas. Average annual 

precipitation in the basin varies greatly from about 650 millimeters at Lake Naivasha to 1300 

millimetres in the mountain forests of the Aberdares, demonstrating the basin's spatial 

diversity. The Naivasha Sub County station measures an annual pan evaporation rate of 1790 

mm, which contributes to the lake basin's semiarid environment. A reduced rate of 

evaporation is observed at higher elevations. Average monthly lows at Lake Naivasha are in 

the 6°C to 10°C range, while average monthly highs are in the 26°C to 31°C range. 

Temperatures typically hover in the range of 15.9 to 17.8 degrees Celsius on a monthly basis 

(De Jong, 2011). The warmest months are December, January, and February, while the 

coolest are June and July, with an average temperature of 12.3 degrees. 

 

Figure 3.2: Naivasha cropland ecosystem 
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3.2 Determination of Spatio-Temporal Soil Moisture Storage and Retention Capacities 

in Maasai Mara National Reserve Rangeland Ecosystem 

a) Meteorological Data 

Rainfall, wind speed, relative humidity, and air temperature were measured from a set-up 

of installed automatic weather station at meta-plains of Maasai Mara National Reserve and 

the datasets were recorded at every 15min to half-hourly timescale as shown in figure 3.3. 

The main data logger was connected to the automatic weather station cables, which enabled 

data streaming for various parameters of the catchment atmospheric conditions.  

 

Figure 3.3: Automatic meteorological station at Maasai Mara National Reserve. From left to 

right: Cosmic Ray Neutron sensor, Standard rain gauge, Eddy covariance, Bowen‟s ratio with 

tipping bucket rain-gauge and CNR4 Net radiometer 

Rainfall was measured using a tipping bucket (resolution:0.2mm per tip) rain gauge 

installed at the MMNR main weather station which also helped in the calibration of the 

standard rain gauge installed to collect the rainfall data. The rain gauge was placed closer to 

the cosmic ray neutron sensor. The standard rain gauge readings (R, in mmh
−1

) were 

corrected for catching, wetting, and evaporation losses according to WMO (2009). 

92.02.1 RRcor                                                                                                                        (3.1) 

b) Carbon and Water Vapour Fluxes 

In the study, a CO2 and H2O Flux Eddy Covariance measurement system was installed in a 

tower at an open homogeneous ground surface of MMNR Meta Plains, which acted as the 

Main Weather station. The instruments equipped were an open path infrared CO2/H2O gas 

analyzer (Licor 7500, LI-COR Biosciences, USA) and a 3-D sonic anemometer (CSAT3, 

Campbell Scientific, UK). The EC‟s tower at MMNR main station complex was 8 meters 
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high and the Licor-CSAT3 sensor separation distance was 5.5 cm. Wind direction was 

measured in three directions (x, y and z) while the vertical wind velocities and specific 

humidity was measured with 10Hz frequency. All the sensor‟s data loggers were set to record 

data in temporal resolution of between 15 and 30min intervals, which were finally averaged 

to daily and monthly values for easy handling by respective models as input parameters. 

a) Evapotranspiration 

The Eddy Covariance (EC) was used to measure the land surface exchange fluxes within 

the Main Mara station where the Automatic Weather Station was established with mainly 

homogeneous natural grassland dominated environment. The site was chosen for the 

installation of the instruments because it would allow for accurate measurements of the 

transfer of heat, energy, and momentum between the land and the atmosphere without 

compromising the integrity of the ecosystem. An EC exchange flux was defined as the 

covariance between the vertical wind speed and the scalar of interest. Therefore, if we apply 

this to the LE flux (Wm
-2

), we get, 

''wqLE 
                                                                                                                     (3.2) 

where,   (Jkg
−1

) and  (kgm
−3

) are the heat of vaporization and the density of air, 

respectively. The symbol q  (kg kg
−1

) stands for the specific humidity of the air, and w  (ms
−1

) 

denotes the vertical wind speed. The term 
''wq
 is the covariance between the fluctuations of 

the two quantities. The EC data have undergone all necessary corrections, such as the 

correction of the sonic temperature for the effect of moisture according to Webb, Pearman, 

and Leuning (WPL), the correction of the water vapour flux for air density effects (Webb et 

al., 1980), and the correction of the coordinate rotation. Net radiation, air temperature, and 

humidity were measured with a Bowen's ratio system for use in adjusting the Eddy 

Covariance (EC) system's accuracy. Since the majority of the land in the area is grassland, a 

Bowen Ratio (BR) system (Campbell Scientific Inc., CSI) was erected near the northernmost 

end of the primary weather station. It   included a net radiometer Q-7.1 (CSI), a dew-point 

hygrometer "Dew-10" (General Eastern, MA, USA), three soil heat flux plates (HFT3, CSI), 

four soil thermocouples (TCAV, CSI), and two fi-ne-wire thermocouples (FW05, CSI). 

Every 30 minutes, the data was logged into a data recorder for later analysis. The built-in 

sensors scanned data once every second with basic processing, like wind correction of net 

radiation. At the end of each quarter, the processed data was downloaded to a desktop 

computer where it could be stored and used in subsequent calculations and analyses. Eddy 

covariance (EC) data for the study region was gathered using a Campbell Scientific data 
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logger (CR3000, Campbell Scientific, Logan, UT, USA) and analysed according to 

standardized eddy covariance techniques, as described in Reed et al. (2014; 2016) and Desai 

et al (2009). Open source EddyPro 3.0 software (LI-COR Biosciences, Lincoln, NE) analysed 

the 10Hz frequency wind velocities, CO2 and H20 flux concentrations, and calculated the 30-

minute fluxes. Energy balance was described by the following ways: The method of Leuning 

et al. (2012) was followed using equation 3.3, where energy balance for the field site was 

defined with net radiation ( nR ), measured latent ( LE ) and sensible ( H ) heat fluxes. Soil heat 

flux, 0G
 
was also scanned via heat plates at depth (G) and energy storage within the soil 

profile (
gJ ) and energy storage within the canopy ( vJ ) at each 30 min time scale. 

vgn JJGHLER                                                                                                   
(3.3) 

In this method, the net radiation was considered positive for energy flux towards the surface; 

the other values are positive for energy leaving the surface. 

b) Ground Heat Flux 

Three soil heat flux plates at 6cm and 8cm depths were also set up. The hydraulic gradient 

at the water balance domain's base was calculated using data from five sensors placed at 

various depths (two matrix potential sensors at 40cm and three more at 80cm). A distance of 

100cm was chosen as the horizontal distance between sensors. Using the measured soil heat 

flux and the heat storage change (equation 3.4) between the land surface and the plates, we 

were able to determine the ground heat flux (Foken, 2008b). 

t

LTC
S v

G





                                                                                                             
(3.4)  

where, vC
 
(Jm

−3
◦C

−1
) indicate the volumetric heat capacity of the soil, T  (◦C) represents the 

soil temperature change during the period of time, t , measured, and )(mL  is the thickness of 

the soil layer above the soil heat flux plates.  

3.2.1 Soil Physical and Chemical Properties of Maasai Mara Rangeland Ecosystems 

a) Soil Texture 

Soil texture for 24 selected sampling points at bearing angles of (0, 60, 120, 180, 240 and 

300) degrees and radii distance of (10, 25, 75 and 175) m in the study area denoted as A, B, C 

and D rings were collected, labelled and taken for laboratory analysis (appendix A.4). For 

each field test, 144 soil samples were collected from the 24 sample points at depths of 

midpoint range 0-5cm, 5-10cm, 10-15cm, 15-20cm, 20-25cm, and 25-30cm for biophysical 

soil properties characterization, which included texture, bulk density, particle density, soil 
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moisture. The mixture of all soil profile depth samples were used for soil chemistry analysis 

such as pH, soil organic matter, or total organic carbon including other macro and 

micronutrients for soil in MMNR rangeland and Naivasha cropland ecosystems.  

The soil was dispersed with sodium hexametaphosphate and mixed with water, then 

subjected to the conventional procedure of screening and sedimentation analysis based on 

Stokes' Law (hydrometer method) to evaluate its texture on soil suspension (Karkanis et al., 

1991). This study on particle size distribution was conducted at the National Agricultural 

Research Laboratories of the Kenya Agricultural and Livestock Research Organization 

(KALRO), in Kabete (NARL). Particle diameter and the gravitational, buoyant, and drag 

forces acting on soil particles were used to calculate the settling velocities of individual 

particles. The Stokes‟ law written as in equation (3.5) gave the free fall velocity as; 
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(3.5)  

where, v  = settling velocity,  g  = gravitational acceleration, g  = 9.80 m/s
2
, s  = density of 

dropped object d  = diameter of dropped object,  F = density of fluid   = viscosity of 

fluid. Soil mixture was finally classified according to soil textural triangle, where determined 

percentage distributions of sand, silt and clay particles were characterised to give the soil‟s 

textural classes (Saxton et al., 1986), Figure 4.7).  

b) Bulk Density 

Blake and Harge (1986) used gravimetric coring method  to determine the bulk densities 

for each soil depths and a water pycnometer was employed to find the soil particle density,
Z  

(Soil Survey, 2014) (Appendix B.6) 

c) Soil Organic Matter 

The Organic Carbon (% OC) was analysed by Walkey and Black procedure (Nelson & 

Somners, 1982). Organic matter (OM %) was calculated by multiplying OC with 

conventional Vanbameller factor. The values of organic carbon were multiplied by a 

Vanbameller factor of (58%) 1.724 to obtain values for organic matter content available in 

the soil. The organic matter content was measured as the Cox in % (Xingwu et al., 2017). 

These values were converted into the organic matter in percentage using the conversion 

equation OM = 1.724 Cox (%). According to Saxton and Rawls (2006), the organic matter 

content of the soil is critical for soil water retention. Increased soil pore volume can 

significantly increase infiltration, which is facilitated by soil aggregation and channels 

created by roots and soil organisms. 
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d) Macro and Microelements of Naivasha Cropland 

Measurements for a wide range of chemical characteristics in the Naivasha Cropland 

ecosystem were analysed using the outlined methods and the findings are shown in the 

appendix (B.14). A 1:2.5 (w/v) soil-water suspension was used to measure the soil's pH with 

a pH-meter with a glass electrode (Black, 1965). Conductivity bridge was also used to 

measure electrical conductivity (EC) of soil by immersing an electrode in a mixture of soil 

and water (Hanna, 1964). In addition, Bremners' modified macro-Kjeldhal method calculated 

the total nitrogen (1965). Phosphorus was recovered using the Bray 1 extraction technique 

(Bray & Kurtz, 1945), and P content was calculated through calorimetry. The other total 

metal analyses for Zn, Cu, Fe, Mn, Ca, Mg, Na, K, Cr, and Pb was measured using an Atomic 

Absorption Spectrophotometer (AAS), nova 400 Germany, following extraction through dry 

ashing (Neutral Ammonium Acetate). 

e) Infiltration Rate/Saturated Hydraulic Conductivity 

The infiltration measurements was conducted at the ten-5TM-ECH2O soil moisture, 

temperature stations using a double ring infiltrometer with inner and outer ring diameters of 

30/55cm and a height of 25 cm, as described by Ayu (2013). (Appendix B.9). Charts for 

MMNR station illustrated infiltration rates (Figure 4.12). Based on its attractiveness as a 

function of computational time and cumulative infiltration, the study used Philip's two-term 

equation (Sharma et al., 1980). They demonstrated an approximation of cumulative in-

filtration I over time in water-ponded circumstances by, 

AtStI  05

                                                                                                                         (3.6) 

where, I  represents cumulative infiltration L, S represents sorptivity (L/T
0.5

), and A 

represents a constant (L/T). With more and more elapsed time, the first term becomes 

insignificant, and A, which stands for the bulk of the gravitational influence, becomes more 

pivotal (Koorevaar et al., 1983). The A term represents the saturated hydraulic conductivity 

of the wetted zone )( wK
 
following a significant amount of infiltration time (Bouwer, 1986). 

3.2.2 Cosmic Ray Probe Soil Water Content Determination 

Continuous monitoring of soil moisture was done via cosmic ray soil sensors (Model 

CRS-1000 from Hydroinnova LLC, Albuquerque, NM, USA) and (Decagon Devices, Inc.) 

connected to a data logger. The CS 616 sensors (Figure 3.1, 3.5) were buried underneath the 

soil at 5cm depth concentrically in three-degree angles of 120
o
, 240

o,
 and 360

o
,0

o
 with 

equidistance footprint of 7m. During the seasonal field visits, undisturbed soil samples were 

collected from the periphery of 5TM-ECH2O (soil moisture, soil temperature) stations at 
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specific profile depths (P1, P2, P3, P4 and P5) of respective (0-5cm, 5-10cm, 10-15cm, 15-

20cm, 20-25cm, and 25-30cm, 35-40cm and 75-80cm) represented by 2.5cm, 7.5cm, 12.5cm, 

17.5cm, 22.5cm and 27.5cm, 37.5cm and 77.5cm. Sample collections were spatial distributed 

in distances of 10m, 25m, 75m, and 175m from the CO2 flux collars using core-sampling 

rings (5cm diameter, 5cm height) which allowed measurements for further soil properties 

under controlled laboratory conditions. The soil water content was determined according to 

the described methods as follows; 

3.2.3 Neutron Intensity Method 

Desilets et al. (2010) developed a shape-defining function, hereafter called oN -method, 

to determine volumetric soil water content vol (cm
3
cm

-3
) directly from corrected neutron 

flux: 

)()()( 2

1

1 bdopihbdovol aaNNa   

                                                                  
(3.7) 

where, the parameters oa = 0.0808, 1a  = 0.372, 2a = 0.115 are dimensionless and oN  is a 

site-specific calibration parameter. The assumptions made were that the variables, oa 1a and 

2a  are independent of the chemical makeup of the soil and are stable throughout time 

(Desilets et al., 2010; Zreda et al., 2008). The oN is a continuous calibration parameter that 

varies with time and depends heavily on local variables. 

3.2.4 Molar Fraction Based Method (Hmf-Method) 

An approximation of the relationship between hydrogen molar fraction (hmf) and neutron 

flux is given by Franz et al. (2013) as, 

)181.6exp(195.4)1.48exp(486.4 hmfhmf
N

N

s

pih 
                                   

(3.8) 

where, sN  is a time-constant site-specific calibration parameter (cph) and pihN  is the neutron 

flux corrected for pressure, incoming radiation and air humidity. 
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Figure 3.4: The cosmic-ray probe measurement footprint 

sN was calibrated for each probe with the average measured neutron flux pihN  of a 12 h time 

window at the time of calibration and the calculated hydrogen molar fraction were based on 

sampling campaign results. 

3.2.5 Field Calibration and Validation of Cosmic Ray Soil Moisture Sensor 

There were ten calibration campaigns conducted between 2017 and 2019 over the field 

study's biannual period. The first incident occurred in February, at the height of the rainy 

season, when the soil was exceptionally saturated. Zreda et al. (2012) created the 

recommended sampling pattern for the calibration of CRNS, which was slightly changed by 

Franz et al. (2012b). The prescribed sample plan involved four concentric circles with radii of 

10, 25, 75, and 175m around the CRNS (Figure 3.5). From the sensor, six straight lines 

pointing to the following bearings (0 degrees, 60 degrees, 120 degrees, 180 degrees, 240 

degrees, and 300 degrees) intersected each of the four circles uniformly. All of the junctions 

were sampled, and the samples were taken from the exact centre of the intersections. Due to 

the exponentially decreasing sensitivity of the CRNS with increasing distance, the sampling 

design ensured that each sample contributed equally to the spatial mean of soil moisture 

measured by CRNS. Soil cores were taken from the ground at 18 different locations within 

the sensor's footprint, each one 30 centimetres in length. The cores were then cut into six 

equal sections, each 5 centimetres in thickness: 0-5cm (0.25cm), 5-10cm (7.5cm), 10-15cm 

(12.50cm), 15-20cm (17.50cm), 20-25cm (22.5cm), and 25-30cm (27.5cm). We collected 

108 soil samples total, 10 from each of the 10 calibrations, and transported them in a cooler 

box full of ice to the chemical department at Maasai Mara University for analysis and 

gravimetric determination of water content (GWC). The water content and bulk density were 



51 

calculated by immediately weighing the samples, drying them in an oven at 105 degrees 

Celsius for 24 hours, then reweighing them. 

Five depth-representative soil samples were taken to Kabete for analysis of texture, 

particle density, total organic carbon, and root biomass at the National Agricultural Research 

Laboratories (NARL). The 108 samples (from the most recent calibration campaign in 

November) were divided into strata according to their sampling depth. Two grams were taken 

from each of the 18 samples taken at each depth range (0-5cm, 5-10cm, 15-20cm, 35-40cm, 

and 75-80cm), then these were combined to make a single bulk sample. This was followed by 

a search of the scholarly literature to determine the lattice water value. When calculating 

SOM, dried soil samples were weighed and re-dried at 400 degrees Celsius for further 24 

hours. This was done using the "loss on ignition" method as described by (Ball, 1964; Davies, 

1974) as the organic material is destroyed throughout the process. Extracting the root biomass 

and organic matter from the soil was done. After being weighed, samples were re-heated in 

an oven for 24 hours at a temperature of roughly 1000 degrees Celsius to calculate the 

fraction of soil organic matter and root biomass. Afterwards, 0.556 was multiplied the weight 

of the soil organic matter and root biomass, which is the ratio of 5 times the molecular weight 

of water, to obtain the equivalents of water. The molecular weight of cellulose was 

considered using the same method as Hawdon et al. (2014), which means that the fact that 

cellulose (C6H10O5) has 10 hydrogen atoms per molecule whereas water (H2O) has only two 

was taken into account. To lessen the   impact of measurement noise, the sensor's neutron 

counts were smoothed with a 12-hour moving window (Bogena et al., 2013). The neutron 

counts were then corrected for variations in (a) pressure, (b) incoming neutron flux, and (c) 

water vapour in the air using equation (3.7) as presented by Desilets et al. (2010).  

3.2.6 Calibration of Cosmic Ray Soil Moisture Sensor by Gravimetric Sampling 

The recommended gravimetric soil-sampling method for the calibration of CRNS 

produced by Zreda et al. (2012) was followed and significantly modified for use in 

calibration campaigns as described in detail by Franz et al. (2012b). At each of the 24 

calibration locations, 144 soil samples were taken from 0-5cm, 10-15cm, 15-20cm, 35-40cm, 

and 75-80cm depths using a core ring (5cm in diameter and 5cm in height) at concentric 

sampling (coordinate) points at four radial rings at 60, 120, 180, 240, 300, and (0, 360) 

degrees. Pits or trenches 50 centimetres (cm) wide and 100 centimetres (cm) deep were dug 

for core sampling to the bottom of the pit or trench during calibration. 
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                      Legend 

 Gravimetric soil sample and 

lattice water.    

 Grass samples – Destructively 

harvested during Morning,     

Afternoon and evening 

(towards end of soil sampling. 

 Existing CS 616 at 5cm and 

7m from the cosmic ray probe. 

 Existing soil moisture, soil 

temperature profiles at 5cm, 

10cm, 20cm, 40cm, and 80cm. 

 Calibration soil moisture      

profiles installed at 0-5cm, 5-

10cm, 15-20cm, 25-30cm and 

35-40cm. 

Figure 3.5: Calibration procedure for gravimetric soil sampling 

Soil samples were taken on 20
th

 May 2018 to calibrate neutron intensity ( oN ) and 

determine site-specific parameters. The excavated soil samples were placed in plastic bags 

and transported to a laboratory within 10 hours. The damp dirt from the field was collected, 

weighed, and then dried at 105 degrees Celsius for 48 hours in a well-ventilated oven. The 

samples were weighed and reweighed until the final weights were consistent within 

measurements. In order to get the volumetric water content, we multiplied the gravimetric 

water content by the bulk density, which is based on the mass balance. In order to convert the 

gravimetric soil moisture content to the volumetric water content for use in the CRNS 

calibration, a representative bulk density measurement is required. In contrast, CRNS 

measures the soil's volumetric moisture content, which is expressed as the ratio of the soil 

sample's water volume to its total volume (m
3
/m

3
). In order to calculate the rangeland's bulk 

density, rings of undisturbed soil were taken from a number of different depths and places. 

After some computation, we found that the average bulk density was 1.34g/cm
3
. Although the 

rangeland is a natural ecosystem, its high bulk density value can be linked to a number of 

factors, including the dense grass cover, low organic matter content, low platy soil structure, 

low porosity, high proportion of sandy clay loam (SCL) soil, and compaction brought on by 
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wildlife trampling, tourist track traffic, and invasion by Maasai herds. Here, the calibration 

target was to determine the average oN
 
value (site-specific calibration parameter), which is 

the theoretical neutron intensity (counting rate) in air above dry soil (no moisture).  

The CRNS primarily sends data through satellite link once per hour. The procedure for 

calibrating was based on one developed by Franz et al. (2014, 2015). The neutron count 

corrections were the first step in the initial calibration method. The neutron correction factors 

were  calculated using the following formulae. 

CSCI

CWVCPN
Ncorr






'

                                                                                                     
(3.9) 

“where, corrN
 
is the corrected neutron counts per hour, N‟ is the raw moderated neutron 

counts, CP is the pressure correction factor, CWV is the water vapour correction factor, CI is 

the high-energy intensity correction factor, and CS is the scaling factor for geomagnetic 

latitude. 
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(3.10) 

where, L is the mass attenuation length for high-energy neutrons (g/cm
2
), P is the 

atmospheric pressure (mb) at a specific site and P0 is the reference atmospheric pressure 

(mb).    

 ref

vovo PPCWV  0054.01
                                                                               

(3.11) 

where, Pvo is the absolute humidity of the air (g/m
3
) and Pvo

ref
 is the reference absolute 

humidity of the air (g/m
3
).  
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(3.12) 

where, ml  is the selected neutron monitoring count rate at any particular point in time and Iref 

is the reference count rate for the same neutron monitor from an arbitrary fixed point in time. 

The neutron flux data was obtained through the neutron-monitoring database 

(www.nmdb.eu), which provides real-time data from a global network of monitoring stations. 
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where, x, y, z is location and elevation, and t is time. The following calibration function was 

then used to determine the No value for each calibration 

Rearranging the calibration function to determine, 
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(3.15) 

where 
p is the gravimetric water content (g/g), LW  is lattice water content (g/g), SOC  is soil 

organic carbon water content (g/g), bd  is dry soil bulk density (g/cm
3
), N is the corrected 

neutron counts per hour, and N0 is an instrument-specific calibrated parameter.  
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Notably, here soil moisture is often expressed in units of volume percent,

100(%)  bdpVWC  . soc
 
was not determined, but was given a value of 0.01 g/g based 

on published values. lw was determined to be 0.154 g/g. This was a 50-g representative soil 

sample sent to Activation Laboratories in Canada for w  
determination by combustion at 

1000°C (Franz et al. (2014, 2015. Correction for biomass was also computed using equation 

3.17. 
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where, BWE is the biomass water equivalent (mm). Vegetation types whose biomass varies 

with their growing stage are often the focus of the biomass computation, but since short 

grasslands of varying species predominated in MMNR, this was not the case (appendix A.9). 

Thus, the water equivalent of biomass was rather high. The neutron count (N) for each 

calibration was calculated by averaging the neutron count during the period when soil 

samples were collected for that calibration. Using the rearranged calibration Equation 3.15, 

we were able to calculate the N0 value for each calibration from these counts. 
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3.2.7 Calibration by Soil Moisture and Temperature Capacitance Probes 

In the study, 10 (ten) 5TM-ECH2O (soil moisture, soil temperature) campaign sensor 

stations were installed at various spatially distributed points in the ecosystem of MMNR and 

similar probes were installed in Naivasha cropland for moisture monitoring as demonstrated 

in figure 3.6.  

 

Figure 3.6: Soil moisture and temperature capacitance (5TM-ECH2O) probes 

Five combined 5TM-ECH2O soil moisture sensors at each point were horizontally placed 

in soil profiles as follows; first layer was ranged between P1(0 - 5cm), second layer between 

P2 (5 - 10cm), third layer at mid-point of P3(15 - 20cm), fourth layer between P4(35 – 40cm) 

and the fifth layer was finally ranged at mid of P5(75cm – 80cm). These were installed below 

the soil surface to continuously measure soil water content at temporal resolution of 15mins 

interval. The trench was compacted during backfilling each layer by ensuring the soil 

surrounding the probe is properly fixed to minimize preferential capillary flow to the sensor 

probes. A laboratory calibration database on gravimetric water content, soil moisture probes 

were used to determine and statistically verify the accuracy of the cosmic ray soil moisture 

sensor. 

3.3 Soil Moisture Storage Measurements 

Soil water content was measured using the gravimetric technique, which entails obtaining a 

sample of the soil, weighing it before any water is lost, and then weighing it again after it has 

dried in an oven. Drying water mass was a direct indicator of soil moisture. The root zone 

water content ( rzW ) was calculated as the sum of volumetric water content, v  at each depth, 

multiplied by the depth of soil layer represented by the water content.   

 

   P1 (0-5cm) 

   P2 (5-10cm) 

     P3 (15-20cm) 

P5 (75-80cm) 

   P4 (35-40cm) 
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(3.18) 

where, 1v , 2v , 3v , 4v and 5v are volumetric water contents at five soil depths 

representing the root zone, 1d , 2d , 3d , 4d
 and 5d

 
are the thickness of each of the five soil 

layers sampled; and rzW
  has the units of d . Five soil layers were used in this study.  

3.3.1 Gravimetric Water Content 

Gravimetric analysis was used to calculate the volumetric water content of soil samples 

taken from various locations near and far from the central weather station, where cosmic ray 

neutron sensor and soil moisture, soil temperature (5TM-ECH2O) capacitance probes were 

installed (Appendix B.1). For this study, 144 samples of soil were collected geographically 

utilizing   sampling core rings during field visits, then stored in a cooler box and oven dried at 

105 degrees Celsius for 24 hours. The soil was taken from in-field locations using core rings 

(5cm in diameter and 5cm in height), with additional samples gathered concentrically at 

varying distances from the primary weather station (60, 120, 180, 240, 300 and 360). 

Different profile depths are shown by the horizontal distances of 25, 50, 75, 150, and 175m 

from the centre of the cosmic ray probe footprint radii (0-5, 5-10, 15-20, 35-40, and 75-

80cm). The depth-averaged SMC for each site and measurement time was determined in this 

study using equation (3.19), based on 144 samples of shallow depth SMC data. 
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(3.19) 

where, n is the number of measurement layers at the site j, and SMCn is the mean soil 

moisture content in layer n calculated by five sampling profiles. The temporal-averaged 

shallow SMC of each site was also calculated by using equation (3.20): 





n

n

jn SMCSMC
1                                                                                                            

(3.20) 

where, n is the number of measurement times at the site j.  

Samples were also evaluated for bulk density (dB), soil textural categorization, particle 

density, Total organic matter (TOC), surface hydraulic conductivity (infiltration rate) and soil 

chemistry (pH) at incremental depths up to 80cm as tabulated in the appendix (B.1 to B.7) 

(B.1 to B.7). The gravimetric soil moisture content is commonly reported by weight as the 

ratio of the quantity of water present to the dry weight of the soil sample (g/g). Capacitance 

probe sensors were placed at five distinct soil levels across the watershed. Decagon Devices 

Corporation, USA-made   5TM-ECH2O sensors were used to take the measurements and their 
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signals were recorded in 15-minute time series using Decagon data recorders for accuracy 

and reliability. To make the soil moisture data more manageable as input to the simulation 

models, a weighted average was calculated for each station on a daily time-step. The 

locations of the sites were spread out across the catchment using the coordinates given in 

table 4.1 and the satellite view of the area provided by Google Earth (Appendix A.5). 

3.3.2 Soil Moisture Content 

Locations of ten soil moisture and temperature capacitance probes were recorded using a 

Garmin GPS60 and are shown in table below (4.1). Diverse soil probes were placed at 

varying depths (Appendix A.6). At P1 (0-5cm), P2 (5-10cm), P3 (15-20cm), P4 (35-40cm), 

and P5 (75-80cm) depths, we used a data logger to take direct measurements of volumetric 

water content as soil moisture. The instruments were connected to a remote computer via 

USB so that all the data could be transferred and analysed there. 

3.3.3 Spatial Variability of Soil Moisture 

Pearson's product-moment correlation coefficient (PPMCC), non-point mean near-surface 

soil moisture, was used to examine spatially variable site features. Maximum surface depth of 

water; percentage of coarse, sand, and fine soil fractions; altitude; percentage of seasonally 

active vegetation cover; and water equivalent at maximum surface depth were some of the 

features analysed. Dorigo et al. (2015) compared the soil moisture data reported by the 

validation ground stations network to the ESA CCI soil moisture composite product. For the 

most recent merger period (July 2012-December 2014), the median correlation coefficient 

across all stations was 0.89 with a 95% confidence interval of 0.96 to 0.79. (third and first 

quartiles of the series of correlation coefficients obtained in each station). When a given site 

characteristic has no influence on the spatial distribution of soil moisture at that site, then 

reject the null hypothesis that soil moisture is related to any single site characteristic index or 

value. The statistical significance of r was calculated at a significance level of = 0.05 for both 

positive (+) and negative (-) correlations. These methods were used in this investigation. 

3.3.4 Temporal Variability of Soil Moisture 

Grant et al. (2004), Grayson and Western (1998), and Vachaud et al. (1985) all 

recommend using time stability analysis to determine how much each measurement site 

varies from the average soil moisture in a watershed. Here, time stability analysis was 

required for each sample location on each sampling date, calculation of soil water storage (

Sij ) at the greatest common depth (80 cm) and the relative difference ( ij ) in soil water 
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storage capacity and catchment mean near-surface soil water storage ( Sj ). Soil water storage 

at each sample location i, at time j, was calculated as: 

ijij zSij                                                                                                                           
(3.21) 

where, ij and zij  represent measured near-surface soil moisture content and the thickness of 

the sampled soil profile (5 cm) respectively at location i, time j. The relative difference ( ij ) 

between soil water storage ( Sij ) at a location, i and the catchment mean near-surface soil 

water storage   (


Sj ) observed at time j was computed as; 
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(3.22) 

The mean relative difference ( i


 ) for all sample times was calculated as: 
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(3.23) 

where, m  is the number of sampling times. Time stability between successive measurement 

dates was determined by a Spearman correlation coefficient ( rs ) described by Vachaud et al. 

(1985): 
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where, n is the number of observations, )( 2jRi  is the rank of Sij at location i, time j2, and 

)( Ii jR
 
is the rank of Sij at location i, time j1. The time stability between two sampling dates 

becomes more stable as rs  approaches 1, with perfect time stability occurring where 1rs

(Vachaud et al., 1985). In addition to time stability between successive sampling times, we 

are interested in the tendency for locations to retain their relative wetness ranks throughout 

the year. Grayson and Western. further suggested that the standard deviation of the relative 

difference for a sample location )( i is an indicator of time stability, reasoning that 

locations with low values retain similar relative differences through time. The standard 

deviation is calculated as: 

2/1

1 1
)( 
























n

j

i
m

iij 


                                                                                                      

(3.25) 
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where, m is the number of sample times. It is possible that extreme wet or dry locations have 

high )( i values while retaining stable wetness ranks. To identify these locations, rank 

change index (RCI) was used. The RCI for a location i is the sum of the absolute values of 

the differences in rank between successive measurements: 

 



n

j

jji RRRCI
1

1

                                                                                                        

(3.26) 

where, m  is the number of sample dates, and R  is the rank of the location‟s soil moisture 

content relative to all locations on date j. 

3.4 Soil Moisture Retention Capacity 

The soil water potential was measured with a tensiometer at between 0-0.05m, 0.05m-

0.1m, 0.15-0.20m, 0.25-0.30m, up to 0.35-0.40m, where the porous ceramic cup was vertical 

inserted into the soil layers on the spatial selected sites where soil was heterogeneous and due 

to the length of the tensiometer which was 0.43m. Soil samples of undisturbed structure were 

also collected in volumetric rings from spatially distributed twenty-four (24) different 

trenches/pits surrounding the cosmic ray probe at various concentric points with profile 

depths of 0-5, 5-10, 15-20, 35-40 and 75-80 cm. This determination was critical due to the 

soil moisture variation in the soil profile and rooting depths, the grassland physical properties 

of the subsurface layers were significant in the computation of plants available water content 

on the plant root systems under respective conditions. In the study, the volumetric water 

content ( ) data obtained for samples with undisturbed structure, soil water retention curves 

(SWRC) for each replicate from similar sample soil depths were adjusted. The adjustments 

were based on two distinct models. First, by the van Genuchten (1980) model, described in 

equation (3.27) with the Mualen restriction  
n

m 11 , by means of software RETC (van 

Genuchten et al., 1991), calculating the modulus of the potential at the inflection point of 

SWRC ( IPh ) and the corresponding water content ( IP ), as described by Dexter and Bird 

(2001), as presented in equations 3.27 and 3.28. 

  res

mn

ressat h  


)(1)(
                                                                                        

(3.27) 

where,   is the soil water content (cm
3
cm

-3
); h is the modulus of the potential or the soil 

water tension (kPa); sat  is the water content of the saturated sample (cm
3
cm

-3
); res  the water 

content (cm
3
 cm

-3
) at 1500 kPa tension, and m, n, α are the adjustment parameters of the 

model. 
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(3.29) 

Subsequently, the cubic polynomial model, between  and the logarithm of matric potential 

in cm H2O (pF), for calculating IPh  and IP  as proposed by Mello et al. (2002), is shown in 

equations 3.30, 3.31, 3.32 and 3.33: 

32)log(   dbh
                                                                                               (3.30) 
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(3.32) 

Equating equation (3.32) to zero, we had the water content at the inflection point: 

d

c
IP

3




                                                                                                                           
(3.33) 

where, h  = the matric potential modulus, hlog  = logarithm of matrix potential; IP  = water 

content corresponding to the inflection; a, b, c and d are adjustment parameters. 

3.4.1 Statistical Analysis 

Significant impacts of soil moisture, bulk density, particle density, and total organic 

carbon on biomass production were identified by analysis of variance (ANOVA) using the 

PROC GLM program in SAS. The treatment means were independently analysed using 

Fisher's protected least significant difference (LSD). SAS's PROC REG technique was used 

to do the study of regression (SAS Institute 2008). Statistical measures (mean, variance, 

maximum and lowest value, standard deviation, and coefficient of variation) were used to 

characterize the soil moisture content at various locations (Table 4.9 to 4.14). They were 

computed and employed to gauge the degree of data dispersion. The calculation of 

Spearman's rank correlation coefficient aimed to correlate the soil water content at various 

times and its relationship to other soil parameters. The relative mean difference (
ij ) was 

calculated and presented graphically in order to show the rank of wettest, driest and mean 

points in the area for each year. This method ranks the measurement sites by their deviation 

from the spatial average (Vachaud et al., 1985). These steps were taken to determine the 

average relative difference; 
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(3.34) 

where,
ij is calculated by the difference between the measurements at each point ( i ) on day 

( j ) and the mean measurement for day ( j ), and 
jS represents the field mean soil water 

storage for a particular day ( j ). For each location, the average and standard deviation of
ij , 

were calculated and graphically presented. 

3.5 Simulation of the Influence of Soil Moisture Variability on Rangeland and 

Cropland Biomass Production Using Coupled Hydrus-1Dand Agricultural Production 

System   Simulator (APSIM) Model 

3.5.1 Calibration and Validation of Hydrus -1D model  

The infiltration rate, hydraulic conductivity, and moisture content were calculated with 

Hydrus 1D after calibration of the model. The weather data, soil hydraulic characteristics, 

geometry, and timing data were used as input parameters. This natural grassland ecosystem 

soil was profiled at several depths from 0 to 80 centimetres down to reveal the pre- and post-

processed data inputs for each layer. Through trial and error, we were able to calibrate to 

levels that were consistent with the observed data (table 4.23). This research used a 

gravimetric approach to acquire a fifth set of parameters (P5) based on the water content of 

reference soil samples taken at 80cm. Therefore, in order to validate the reference parameters, 

comparisons were made between the four sets evaluated (P1-P4) and the reference parameters 

(P5). Each soil sample was tested for its ability to retain water using a series of five pressure 

heads (-33, -100, -300, -1,000, and -1500kPa), and a moisture retention curve was calculated 

for each. 

3.5.2 Parameterisation and Calibration of APSIM Model 

This model's simulation runs used a trial-and-error approach to calibration, with an initial 

value determined from field experimental data relevant to the parameter to be estimated via 

calibration. After a model was developed using parameters gleaned from a review of the 

relevant literature, a field experiment was carried out to collect data for use in refining the 

model. Rainfall, temperature, organic matter concentration, and carbon to nitrogen (C: N) 

ratio were just some of the input variables used to calibrate the model against the 

experimental dataset of soil and climate conditions. It was necessary to calibrate the model 

after parameterization to confirm that the predicted values were consistent with the observed 

ones. The procedure was repeated multiple times, ultimately culminating in a statistically 

insignificant mean difference. Since it was assumed that elements such soil moisture, C:N 
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ratio, temperature (soil and air), and other environmental factors defining model input 

parameters were tied to plant-specific materials, these factors were not used during the 

adjustment of the model calibration. Adjustment of the parameter values was performed 

manually, with numerous permutations tested until the optimal fit was found. The procedure 

consisted of a series of iterations that were changed up in order to increase the likelihood of 

success. Under the Naivasha farmland as a distinct regime, the model was parameterized and 

assessed for various conditions of climate variables, soil type, plant species (wheat). 

Naivasha cropland was utilized as an independent dataset to quantitatively compare observed 

biomass and yield with simulated outcomes in order to verify the APSIM model. 

3.6 Field Clipping Campaign of Aboveground Grass Biomass 

At both the wet and dry seasons' ends, destructive hand shear cuts to the ground level 

through a metal square frame measuring 50cm x 50cm quadrat were used to collect 

aboveground grass biomass (AGB) (Appendix A.7). Both traditional field methods and 

remote sensing were employed to obtain biomass estimates. The MMNR rangeland 

ecosystem was sampled using a randomized complete block design to gather AGB from ten 

(10) evenly spaced 5TM-ECH20 sampling stations with six (6) replications for each site. The 

treatments inside the Automatic weather station's walled perimeter served as a control group, 

while the stations located outside served as trial plots while being open to wildlife for the 

purposes of feeding and interfering. Independently distributed on radial rings of 10m, 25m, 

75m, and 175m at bearing degrees of (0, 360), 60, 120, 180, 240, and 300, 24 replicate plots 

were sampled radially for each quadrat of dominant grass species. Litter and standing 

sections of each grass were sorted by hand after harvest, their wet weights recorded using a 

digital scale, and they were dried in the sun for seven days or oven dried at 60 degrees 

Celsius for further 72 hours. This helped establish the dry matter content of the plants by 

stopping their metabolism. In order to calculate the total aboveground grass biomass, we 

added together the dry litter and the standing sections. Over a total of 30 months, beginning 

from May 2017, researchers monitored the dominating grassland's per quadrat biomass 

performance twice: once between January and December 2017 and again between May and 

December 2018. (2018 - 2019). Using the approach outlined by Fonseca et al. (2007), the 

standing AGB grass biomasses were trimmed and weighed at the beginning and conclusion 

of each wet and dry growth cycle. Grass biomass was measured "in situ," or in the field, to 

serve as a reference for verifying and calibrating satellite readings. Garmin Global 

Positioning System coordinates were acquired for each quadrat of aboveground grass 

biomass clipped area with 5TM-ECH2O soil moisture probes attached (GGPS). Each 
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quadrat's worth of wet grass cuttings was weighed on a computerized balance, and the results 

were recorded and bagged up for later analysis. After collecting the samples, we dried them 

in an oven at the lab (Appendix A.8) to ensure accurate results. The grass biomass dry matter 

was determined, henceforth termed derived aboveground grass biomass. Dry and wet season 

total aboveground biomasses were spatially calculated in situ for the entire rangeland 

ecosystem over the course of three years (January 2017 to December 2019). Tons per hectare 

were derived from the average of the aboveground grass biomasses that were measured. 

3.6.1 Satellite Estimation of Aboveground Biomass 

The NDVI data values were derived from MODIS and PROBA-V mission vegetation 

instrument that were processed for the same period of months and years that the “in situ” data 

of aboveground biomass campaigns were destructively harvested. At the sampling points (co-

ordinates), the NDVI images were used from Global Land Service of Copernicus products for 

each pixel. The data was downloaded from the Vegetation website (http://free.vgt.vito.be) 

where the satellite images are available in ten (5TM-ECH2O) capacitance probes spatially 

predefined regions of interest. The satellite images were selected for the points/regions of 

interest in the study area as provided in the 5TM-ECH2O coordinates for the experimental 

sites. The relative resolution of the MODIS satellite images was 600m for the selected points. 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

Figure 3.7: Schematic flowchart for satellite biomass estimation 
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a) Extraction of NDVI images 

MODIS, PROBA-V, and SENTINEL-2 were used to process the NDVI time series. The 

Level 2 (100m) products' foundational input layers (normalized difference vegetation index, 

aerosol optical thickness, and fractional aerosol photon extinction rate) came from the Proba-

V satellite until the end of the year. The Proba-V satellite was turned off in June of 2020. 

Level 2 input layers for NDVI, albedo, and fAPAR begun using data from the Copernicus 

Sentinel-2 mission in January 2020. To create the initial 10-day MVC synthesis, NDVI 

pictures from December 2017 through May 2019 were chosen. Copernicus Open Access Hub 

(Sci-Hub) downloads of Global Land Service of Copernicus vegetation image files with 

baseline processing versions between 02.01 and 02.04 were conducted. The initial step was to 

schedule biomass-sampling campaigns around when the instruments were available for taking 

samples. This process was carried out multiple times, once for each data file used in the 

NDVI time series‟ creation. The NDVI images for dry and rainy seasons were derived over a 

36-month time period, from January 2017 through December 2019. Once all data was 

extracted, NDVI images and status maps were made. The yearly average NDVI value is a 

rough measure of growth efficiency and a proxy for net primary productivity. 

b) Dimensionless Model Balance Equations 

In the relationship of soil moisture variability to biomass, the model took the characteristic 

water budget parameters as 1)( sK and 1 which were respectively the time and length 

scale carrying capacity iC  of each species scales and the related biomass density Ni. The 

dimensionless form of the proposed eco-hydrological model consists of the following set of 

balance equations for groundwater depth ( h ), soil moisture ( w ), the first (and eventually 

dominant) plant biomass density ( 1n ), and the second plant biomass density ( 2n ). The 

spatially explicit model is defined in D1 as a function of space x  and time, t : 
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The dimensionless groups in the model (equation 3.37) are: 
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The parameters vq , e , wv , and wd  characterizes the hydrological functioning of the ecosystem. 

The two dimensionless functions 1e  and 2e  link the biological growth to the hydrologic 

regime whereas 1g
 and 2g  represented the ratios between the characteristic timescale of soil 

moisture dynamics and that of biomass dynamics. 

3.7 Evaluation of Land Use Land Cover Change in Rangeland and Cropland 

Ecosystems 

3.7.1 Direct Expansion and Regression for Area Estimation 

Grassland, sparsely scattered shrub-lands, rain-fed cropland, irrigated farmland, and 

varied forest covers (closed and open evergreen or deciduous, broad-leaved) were all 

estimated for both ecosystems, while in Naiveté cropland, mainly rain-fed and irrigated 

croplands were investigated. Cochran's (1977) stratified random sample method was used to 

the estimation of regions with varying land cover and use, yielding the following equation 

(3.41). 
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variance of )(iy


, ))((


iTV , estimated variance of the total for the thi stratum and ))((


iyV , 

estimated variance of 


)(iy . It was paramount to note that in the direct expansion method, 

only the information deduced from the digitization of the segments are used. 

The regression estimators consist of the corrections to estimated average variable Y as a 

function of the results obtained from an auxiliary variable X . In this study, for a given 

vegetation or crop cover, for each segment in the sample, Y is the proportion occupied by the 

crop/vegetation as deduced from digitization of the ground survey and X was the proportion 

of pixels of the satellite image classified as being of the given crop/vegetation cover. A linear 

regression was fitted in each stratum between the two variables. The linear model and the 

entire satellite image classification were used for regression estimation. The formulas found 

in Cochran (1977) was used to estimate the total T  using the following estimator, 
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),(imx  
the proportion of pixels classified as specific cover in the thi stratum, 

),(ix
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the average proportion of pixels classified as specific cover per segment in the thi

stratum, ),,( jix  proportion of pixels classified as specific cover in the 
thj  sample unit in the 

thi stratum, The estimate variance for the regression estimator is given as; 
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If the coefficient of determination is large for most strata, it lowers the estimated variance for 

the regression estimator. 

3.7.2 Relative Efficiency 

Relative efficiency was computed, and accuracy with the regression estimator was 

measured. The ratio of the variances was used to characterize the RE of the regression 

estimate in comparison to the direct expansion estimator. 
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An 2RE  means that the same precision would have been obtained if the ground data sample 

size had been doubled and the satellite image had not been used. 

3.7.3 Analysis of Land Use Land Cover Changes in Maasai Mara National Reserve 

Ecosystem 

The next section details the steps taken to analyse LULC shifts, including the acquisition 

of MODIS-processed satellite images via the Copernicus training data and operational 

workflow, with a few tweaks made to account for variations in spatial resolution and the 

delivered land cover classes and their classification used to create land cover maps. The 

complete MMNR rangeland and the Naivasha agricultural region's Land Use/Land Cover 

information was extracted from MODIS photos. Satellite data has made it possible to monitor 

shifts in land use and land cover at a variety of spatial scales. Previously, ground surveys or 

aerial images could only be used to gather data from very small areas to determine land 

use/cover. Land cover change in bigger watersheds can now be evaluated over varying time 

scales thanks to satellite data, which has greatly increased the scope of ground observation 

and increased the frequency of observations (Al-doski et al., 2013; DeFries & Eshleman, 
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2004). Copernicus, the European Commission's Earth Observation initiative, provided the 

photos for the Level 1 land cover products. In 2009, the European Union authorized the Earth 

Observing Satellite Mission, which is being cooperatively managed by the organization 

www.landcover.org. Time series data on decadal reflectance is used in Land Cover 

Classification, as is seasonal phenology data from the Crop Calendar. Another method for 

pinpointing irrigated regions involves using an index that accounts for both average seasonal 

rainfall and actual evaporation loss. A 2015 version of the worldwide CGLS-100m land cover 

map was used as the foundation for both levels 1 and 2, while the cropland class was further 

subdivided annually into irrigated, rain-fed, and fallow. The applied classification was based 

on the FAO-created Land Cover Classification System (LCCS). Co-created data 

subcomponent with the FRAME Consortium. The Level 2 (100m) products' foundational 

input layers (normalized difference vegetation index, aerosol optical thickness, and fractional 

aerosol photon extinction rate) came from the Proba-V satellite.  

3.7.4 Moderate Resolution Imaging Spectro-Radiometer (MODIS) 

Terra, the first Earth Observing System (EOS) satellite, was launched on December 18, 

1999, carrying five remote sensors. By combining the ability to detect electromagnetic 

radiation across a wide spectrum range with continuous, all-day measurements at three spatial 

resolutions and a wide field of view, MODIS stands out as the most all-encompassing EOS 

sensor. This constant, all-encompassing coverage allows MODIS to complete an 

electromagnetic image of the world every two days. For example, while Landsat's Enhanced 

Thematic Mapper Plus displays the Earth in higher spatial depth, it only captures an area's 

image once every 16 days, which isn't  often enough to catch many of the rapid biological 

and meteorological changes detected by MODIS. The MODIS instruments were developed to 

acquire information in wavelength ranges that were formerly reserved for satellite sensors. 

MODIS adds to what we already know by combining data from older sensors like 

NOAA's Advanced Very High Resolution Radiometer. The Coastal Zone Color Scanner 

(CZCS) and Sea-viewing Wide Field of View Sensor (SeaWiFS) are used to monitor ocean 

biological activities; Landsat is used to monitor terrestrial conditions; and NOAA's High 

Resolution Infrared Radiation Sounder (HIRS) is used to monitor atmospheric conditions. 

Land cover maps show not only whether an area is vegetated, but also what type of 

vegetation is present, distinguishing between coniferous forests, deciduous forests, cropland, 

and grassland; these maps are a product of the on-going data collection that MODIS 

contributes to in order to understand both long-term and short-term change in the global 

environment. The maps not only classify MODIS's high-resolution images according to the 
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types of vegetation present, but also discriminate between other types of non-vegetated 

surfaces, such as bare soil, water, and urban land cover types. Scientists can also use daily 

data to track changes in land cover and land use, such as the conversion of grassland to 

farmland, the recovery of burned land, and the reforestation of previously forested areas. 

3.7.5 On Level II (National and Sub-National Level - 100 m Ground Resolution) 

While discriminating between the productivity of land and water for irrigated and rain-fed 

agriculture in a subset of countries and river basins, we track the growth of a number of 

important crops. The output per unit area of land is measured in kilograms per hectare, while 

the output per unit of water is measured in kilograms per cubic meter. Actual 

evapotranspiration is the unit of measure for the quantity of water expended in agricultural 

output; this metric distinguishes between natural (or "green") evapotranspiration and artificial 

(or "blue") evaporation. Following is a synopsis of the primary steps required to classify land 

cover. 

i) Selection of MODIS imagery 

ii) Pre-processing of MODIS imagery 

iii) MODIS imagery enhancement 

iv) Assessment of classification accuracy 

v) Composition of final land cover maps 

3.7.6 MODIS Imagery Selection 

Image statistics is usually most important for extracting land cover information, and 

choosing MODIS images can reduce pattern mistakes caused by things like crop phenology 

and sensor distortion. Images captured during the dry season (often between December and 

March) were prioritized for this study because to the clear contrast they provide between 

forested and undeveloped areas. Images with distinct changes over time were chosen, and this 

was spaced out over a period spanning 5-10 years to reflect vegetation and other features 

cropup/propup, but according to Campbell (2002), this was shown to lessen image pre-

processing that always cause loss of information. Therefore, images from January 2010 to 

December 2019 were chosen. MODIS imagery (from the MODIS earth observation satellite 

sensor) was used in this procedure. The global website www.landcover.org is a great resource 

for learning about the primary essential design criteria of MODIS images and their 

subsequent implementation. 

3.7.7 Data Pre-Processing 

When examining numerous ten-day MODIS and PROBA-V NDVI images, it is 

immediately apparent that they are impacted by residual atmospheric disturbances during 
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periods and places of heavy cloud cover (Huete et al., 2002). Consequently, the NDVI data 

set was corrected using the algorithm proposed by White et al. (1997), with some tweaks to 

take into consideration the modern data. This technique was designed on the hypothesis that 

cloud influences cause sudden drops in NDVI followed by relatively rapid recoveries (within 

two to three 10-day intervals). Eliminating these drops would need some sort of temporal 

moving-average operation. Benedetti et al. (1994) state that 23 NDVI photos from 2001 were 

created using this method and all of them shared a great deal of information with one another. 

This information was summarised   using a principal component (PC) analysis, which yielded 

a small set of PC images. The CORINE land-cover map was then pre-processed by removing 

the forest class. The original vector file was rasterised at a resolution of 50 m, which created 

a forest/non-forest mask for the whole region. According to Maselli (2001), a forest-fraction 

(or abundance) image was created by superimposing 250-meter-resolution MODIS data with 

a mask created by spatially contracting the mask using pixel aggregation. 

3.7.8 MODIS Imagery Enhancement 

The most useable technique in image enhancement involves the principal component 

analysis (PCA) used to improve the interpretability of MODIS images before it‟s applied in 

actual land use land cover classification. It is meant to reduce the number of bands for the 

creation of new ones accounting to variance of image pixel dataset. This was used to assist in 

features extraction, studying and sorting unique areas and objects seen on the ground and 

relating the same information to the classified image through matching. For example, cases 

such as the emergence of small-scale agriculture, agro-forestry, and managed grass in a small 

parcel of land. Here, differentiating mixed types of land cover was done through improved 

selection of Landsat images that felt in the dry season and use of enhancement techniques. In 

this study, PCA was applied to compress redundant data in just a few bands. This results into 

new images with the same bands as the original images and with reduced data dimensions. 

The quality of new images in terms of interpretability was highly improved due to the 

following corresponding components such as brightness, greenness, and wetness. The 

difference accounted between the classified images and pre-processing of multi-date images 

in PCA are made less tedious according to Collins and Woodcock (1996). The PCA output 

files with digital numbers (DN) range (0-255) in ERDAS IMAGINE are displayed through 

stretching process to unsigned 8-bitwindow, which makes it easy to analyse. According to 

Collins and Woodcock, the multi-date PCA can be efficient and effective representation of 

the weak tie to the interpretation of the results. A MODIS image has pixels each with 256 DN 

that indicates the capacity of electromagnetic energy reflected from the earth surface their 7 
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bands. Filtering functions were replaced by the central pixel value in window with the major 

filtering employed using neighbourhood function to analyse pixels in relation to others in 

their neighbourhood. A kernel size window, which may affect the interpretation of the images 

and here size of 3x3 was found suitable for filtering images of 2000 and 2015 and 5x5 as 

appropriate for MODIS images of 2019. The role of filtering removes “salt and pepper‟ 

redundancies in land cover types and general appearances by smoothing effect of the class 

edges.  

3.7.9 Accuracy Assessment of Classification 

During the process of MODIS imagery classification, matrix errors mostly occur from the 

selection of training data. It was therefore needful to conduct an accuracy assessment on the 

derived land cover maps. This indicates the validity of the produced land cover maps because 

the classified maps and the ground truth are accounted for simultaneously. Baldyga (2005) 

shown that accuracy assessment of a given region, future efforts of information were directed 

towards quantifying the dynamics of land cover. According to Congalton (1991), the most 

commonly techniques used accuracy assessment of land cover classification for remotely 

sensed images in inter-rater reliability of error matrix (called confusion matrix, contingency 

tables, covariance matrix, or correlation matrix). The design of error matrix entails the 

comparison of classified data from land cover maps and the reference data (ground truth). 

The derived MODIS imagery provided two options of comparison between the generated 

reference data using points generated randomly and the use of ground truth data taken from 

the field. The choice of MODIS image of 2000 was used to test the classification accuracy 

because the other options of EMT+ 2000 was far too old for comparison of the current 

reference data obtained. The table indicates the statistical techniques used to calculate the 

accuracy assessment of error matrix classes or components. The output of the correctly 

classified images is an accurate thematic map. Foody (2002) stated that there are several 

equations that can be used to calculate the level of error statistically including producer 

accuracy, user accuracy, overall accuracy and Kappa index. A standard error matrix was used 

to assess the accuracy of the two classifications (rangeland and cropland) using collected 

ground-truth data. Kappa statistics and overall accuracy were used to determine the 

performance of the selected methods of heterogeneous region (Table 3.1). 
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Table 3.1: Design of Confusion/Error Matrix applied in accuracy assessment of land cover 

classification 

  Classified Data    

  
  
  
  
  
  
  
 R

ef
er

en
c
e 

d
a
ta

 

Class A B C …… n Row 

Total 

A N1,1 N1,2 N1,3  …… N1,n N1+ 

B N2,1 N2,2 N2,3 …… N2,n N2+ 

C N3,1 N3,2 N3,3 …… N3,n N3+ 

….. ……. …… …… …… …… ….. 

n Nn,1 Nn,2 Nn,3 …… Nn, n Nn+ 

Column Total N+1 N+2 N+3 ….... N+n NOA 

 

In reference to the description of Congalton (1991) and Jansen (1996), of error matrix 

components the accuracy assessments of the land cover classification were explained as 

follows; 

i). Rows – The ground truth map corresponds to these thematic groupings (training set) 

ii). Columns – The images have been categorised according to these broad categories. 

iii). Diagonal Values – These are the proportion of instances where a given class label was 

correctly assigned to a pixel (the proportion of ground-truth instances labelled with a 

given class name that were classified as belonging to that class). 

iv). Off-diagonal values – represents the number of pixels from the ground truth that were 

incorrectly assigned a class during the classification process. 

v). Commission Error (or inclusion) – This is a representation of the other classes' ground 

truth pixels that were incorporated into a given categorization (off-diagonal column 

elements). 

vi). Omission Error (exclusion) – Pixels from the ground truth belonging to a specific 

class that were incorrectly assigned to another class during classification are indicated 

below (off-diagonal rows elements). 

vii). Producer‟s accuracy - This is the proportion of ground-truth-class pixels that were 

correctly classified. Here, the accuracy was determined by dividing the number of 

correctly categorized pixels by the total number of ground truth or test pixels of that 

class, one by one, across each row of ground truth data. 



73 

%100
1

1,1


N

N
ACC

                                                                                                 

(3.48) 

where, ACC is the producer‟s accuracy, N1,1 is the total number of the correctly 

classified pixels in that class and N1+ is the total number of ground truth pixels of that 

class (summation of the pixels in that row. 

viii). User‟s accuracy (inter-rater reliability) - This reflected the proportion of correctly 

labelled pixels relative to all labelled pixels in the categorized image. A confidence 

interval was calculated for each column of classified images by dividing the number 

of correctly categorized pixels by the total number of classified pixels in that class. 
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where, Rel is user‟s accuracy(reliability), N1,1 is the total number of the pixels 

classified in that category and N+1 is the total number of pixels that were classified as 

this category or class (summation of the pixels in that column). 

ix). Overall accuracy – It is a tally of how well the classified data matches up with the 

data in the training set. The major diagonal components are included, but the errors of 

commission and omission are left out. A common expression is as follows. 

%100
N

D
OA

                                                                                                      (3.50) 

where, OA is the overall accuracy, D is the total number of correctly classified pixels 

(diagonals values i.e. N1,1+N2,2 + N3,3 +..…………+Nn,n and NOA is the total number 

of the set (reference) pixels. 

x). Overall kappa statistic – This is the KAPPA-derived measure of agreement or 

precision. Its primary application is in comparing the classified data to the reference 

data (ground truth data) to find statistically significant differences. This idea can be 

stated as; 
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                                                                                (3.51) 

where,
^

K is the overall Kappa statistic coefficient, n  is the number of rows in the error 

matrix, 
iiN ,
represents the total number of correct pixels in a class (value in row i  and 

column i ), iN is the total number of rows i , iN is columns total i and OAN  is the 
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total number of the pixels in error matrix. The values greater than 0.7 indicates that 

the inter-rater reliability of classified and ground data were satisfactory. On the other 

hand, values less than 0.4 means fair agreement while 0.6 to 0.8 indicates substantial 

agreement. A typical guidance used was as shown on the table 3.2:  

Table 3.2: Quantification of Cohen‟s Kappa coefficient as measure of agreement 

Kappa Value Interpretation 

< 0 Less than chance agreement 

0 to 0.2 Slight agreement 

0.2 to 0.4 Fair agreement 

0.4 to 0.6 Moderate agreement 

0.6 to 0.8 Substantial agreement 

0.8 to 1.0 Almost perfect agreement 

Source: (Cohen, 1960) 

x)  Conditional Kappa statistics – This represents the measure of agreement or rather 

accuracy based on KAPPA analysis based on each class category. It is normally expressed as; 
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(3.52) 

where, 
^

iK is the conditional Kappa statistics for individual class category and the other 

symbols are defined as in earlier expressions. 

3.7.10 Evaluation of Model Performance 

In the study, the following indicators were used to evaluate the models; Nash-Sutcliffe 

Efficiency ( NSE ), Pearson product moment correlation coefficient ( r ), Root Mean Square 

Error ( RMSE ) and Coefficient of determination ( 2R ). 

i) The Nash-Sutcliffe efficiency (NSE) is a normalized statistic used to estimate the relative 

amount of the residual variance ("noise") in relation to the measured data variance 

("information") (Nash & Sutcliffe, 1970). The normalized residual error (NSE) showed 

how well the 1:1 line fitted the plot of observed versus simulated data. The following 

equation was used to determine NSE, which is the most widely used and critically 

significant performance measure in hydrology. 
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(3.53) 
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 where, 
obs

iy
 
is the thi observation for the constituent being evaluated, 

sim

ix is the thi  simulated 

value for the evaluated constituent, mean
obsy

 is the mean of observed data for the constituent 

being evaluated, and n is the total number of observations. Applying this formula to raw data 

from any model yields the same result as using the square of the linear regression. NSE may 

be negative for non-linear models. The ideal value of NSE is 1, yet it can be found in the 

range of -∞ to 1.0 (1 inclusive). In general, scores between 0.0 to 1.0 are considered 

satisfactory, whereas scores below 0.0 indicate poor performance due to the mean observed 

value being a better predictor than the simulated value. 

ii) The Pearson product-moment correlation coefficient, often known as Pearson's r, 

Pearson's   r-squared, or the PPMCC, is a measure of the linear correlation (dependency) 

between two variables x and y, with values ranging from +1 to -1, where 1 denotes a perfect 

positive correlation, 0 denotes no correlation, and -1 indicates a perfect negative correlation. 

In the sciences, it is commonly used to assess the closeness of the relationship between two 

variables. A linear link between two variables can be measured with the use of the Pearson 

product moment correlation coefficient, which is defined as 

   

    



 








n

i

n

i ii

n

i ii

yyxx

yyxx
r

1 1

22

1

                                                                                        

(3.54) 

where,
n

y
y

n

i i  1 and   
n

x
x

n

i i  1 ;  where, iy  denotes the measured value, ix refers to the 

predicted value. The Pearson‟s production-moment correlation coefficient measures how 

strongly two variables are associated linearly. For numerical data on an interval or ratio scale 

when each variable follows a normal distribution, the r coefficient of correlation is used. 

iii) The RMSE represents a measure of the overall or mean deviation between observed )( iy

and simulated )( ix values. Since the RMSE has the same unit as the simulated variable, the 

closer the value is to zero, the better the model's ability to simulate that variable. To obtain 

the same unit order, the square root of Mean Squared Error (MSE) is taken multiple times. 

The term for this error is Root Mean Squared Error. For each prediction, the agreement 

between the predicted moisture content )( pi  and measured moisture content )(mi are 

expressed in terms of the root mean square errors (RMSEs), given by 
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iv)  Mean Square Error (MSE) or mean squared deviation measures the average of the squares 

of the errors, the average squared difference between the estimated and actual value. MSE is 

a risk function that corresponds to the expected squared error loss value. MSE unit order is 

always higher than the error unit as the error is squared. RMSE = SQRT(MSE) 
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     where, 

       MSE  = Mean squared error 

       n  = number of data points 

       iY  = Observed values 

       



iY  = Predicted values 

v) The coefficient of determination-squared (R
2
) is a statistic that explains the amount of 

variance accounted for in the relationship between two (or more) variables. It is the fraction 

of the total variance in the dependent variable that can be explained by changes in the 

independent variable as indicated by the regression equation (s). When R
2
 equals 1, it can be 

concluded that the fitted regression equation fully describes the distribution of the dependent 

variable's values in the data set. Conversely, if R
2
 equals 0, it means that no variance is 

explained by the regression equation. 
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where, iy  denotes the measured value, 
ix refers to the predicted value, y represents the 

average of the measured values of y . 

3.7.11 Sensitivity Analysis 

One-at-a-time (OAT) parameter variations were used to conduct the local sensitivity 

analysis of soil-related factors for the soil moisture simulation model. A dimensionless 

sensitivity index was used to indicate the degree to which model results varied in response to 

shifts in input parameters. The base value was changed by x  with xx  01  and 

xxx  02 . The mathematical model output resulting from the implementation of these 

values are 1y  and 2y . The sensitivity index was computed as follows: 



77 

x

yy
I






2

12'

                                                                                                                       
(3.58) 

This index 'I should be normalised to be dimensionless 
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The sensitivity of the model output to each tested input parameter was ranked in accordance 

with Table 3.3, as indicated by Lenhart et al. (2002), with the sensitivity index being 

averaged across the whole simulation period. To conduct the sensitivity analysis, we utilized 

SimLab 2.2, the   latest version of the program given in (Giglioli et al., 2000). (SA). SimLab 

2.2 includes a pre-processor module that lets the user select from multiple combined 

parameter generation methods, a model execution module that lets the user run an internal or 

external model with the parameter combination, and a post-processor module that executes 

uncertainty and sensitivity analysis. 

Table 3.3. Sensitivity Index Classes 

Class Index Sensitivity 

I 05.000.0 I  Small to negligible 

II 2.005.0 I  Medium 

III 00.12.0 I  High 

IV 00.1I  Very high 

 

3.8 Data Analysis 

Soil water storage and retention capacities as it changed monthly rainfall and water 

consumption with yearly biomass production of vegetation were analysed statistically using 

MINITAB 18.0 (Khan, 2013). Confidence interval, simple regression, quality control and 

APSIM and HYDRUS-1D were used as general linear models to simulate and compute the 

trend of biomass production and soil moisture variability which explained the difference in 

growth and development of vegetation biomass in the natural grassland and cropland 

ecosystems with varying soil moisture and soil properties as influenced by climate variables. 

Satellite images of normalized difference vegetation index were derived via PROBA-V and 

MODIS to analyse land use and land cover changes in rangeland and cropland ecosystems. 

The results of the study were presented in form of written text, tables, figures, plates, charts 

and graphs. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter present the results and discussion of each objective and the outcome 

highlighted and presented in tables, graphs, charts and written text in the subsequent order. 

4.1 Determination of Spatio-Temporal Soil Moisture Storage and Retention Capacities 

in Maasai Mara Rangeland Ecosystem 

4.1.1 Rainfall Characteristics 

 

                                                                      (a) 

 

                                                                      (b) 

Figure 4.1:30 minutes‟ rainfall patterns in Mara rangeland ecosystem for the period of (a) 

Oct - Nov 2018 and (b) March - April 2019 
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Rainfall events in most parts of MMNR were quite erratic as a phenomenon of semi-arid 

regions with extreme rainfall occurring as high at some period in a season. As observed from 

figure 4.1, there was heavy rainfall of 6.6mm experienced in late October with slight drop 

towards the end of November and little rainfall close within the period. The rainfall shows 

spatial distribution with inconsistency of high, medium to low rainfall phenomenon. During 

the season, rainfall ranged from as low as 0.2mm to as high as 6.6mm in 30min cumulative 

rainfall. The temporal resolution of 30 minutes‟ rainfall, which could be averaged on daily 

time step, indicates intermittent behaviour of rainfall pattern experienced in semi-arid 

rangelands ecosystem depicted by MMNR. During the period of March to April 2019, high 

intensity of 10.5mm rainfall was received with continuous rains within the same week 

followed by erratic rainfall. This area received a 30-minute rainfall from low to high that 

ranged between0.4mm and 10.2mm in the wet season. The rangeland ecosystem due to 

seasonality was characterised by increased soil moisture content during the rainy periods and 

a decline in dry season caused by low rainfall levels; however, precipitation here is one main 

climatic factor that determines the soil moisture and surface water levels in the ecosystem.  

4.1.2 Air Temperature and Humidity 

 

Figure 4.2: 30 minutes‟ variation of air temperature (red) in relation to relative humidity 

(blue) in Mara Ecosystem for the period of March – April 2019 

Figure 4.2 shows the relationship between temperature and humidity with respect to 

evaporation in 2019. The conditions were quite typical in that the mean daily temperatures 

oscillated between 14°C and 32.8°C. In dry season, there was gradual increase in air 
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temperature especially in the days with average daily temperature above 30°C, which were 

recorded at the station towards the end of March 2019. During the last week of March, the 

season had the highest temperatures. Similarly, some periods in early March had gradual 

increase in air temperature to a maximum not exceeding 30°C while the humidity conditions 

significantly decreased since high air temperatures affects evaporation rates. The percentage 

humidity during the period also oscillated between 16% and 91%. It was observed that 

towards the end of February 2019, there was high humid period above 80% that gradually 

decreased until the end of March when it increased subsequently under decreased air 

temperature and the vice-versa. 

4.1.3 Vapour Pressure Deficit 

 

Figure 4.3: Hourly behaviour of vapour pressure deficit as observed in Maasai Mara 

rangeland ecosystem for the period of Oct – Nov 2018 

In the period under analysis, vapour pressure deficit (VPD) oscillated from as low as 0.3 

kPa to as high 3.4 kPa, in the annual pattern of VPD in 2018, during the mid-month of 

October vapour pressure deficit varied below 0.5kPa to a maximum of 2.7 kPa. During the 

same period on early week of November there was a gradually increase of 3.3kPa and slight 

drop before it gradually increased (figure 4.3). The intermittent behaviour and gradual drop 

of VPD towards the last week of November was characterised by conditions similar to those 

of saturated air with water vapour. The gap experienced between 20/10/2018 and 27/10/2018 

vapour pressure deficit indicates extremely very low humidity attributed by high temperature 

or failure of instrument taking the signals however, the missing data could be interpolated. 

During the same week in mid-November 2018, an occurrence of very high vapour pressure 
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deficit was experienced. The hourly data was cumulated into daily time step for ease of 

graphical presentation. 

4.1.4 Wind Speed 

 

    Figure 4.4: General trend of wind speed in Mara rangeland ecosystem as observed by 

Bowen‟s Ratio system. 

Generally, the wind velocity frequency was high at fivekmh
-1

 with above 200 hz in a 30 

mins wind speed measured via a Bowen‟s Ratio system and declines gradual with as low 

frequency at 19 kmh
-1

 during most of the periods in this region. During the period the rate of 

evaporation was highly influenced by wind velocity, it was observed that with daily average 

wind velocity of five kmh
-1

 high wind speeds mainly prevailed and this was experienced 

during the normal annual dry seasons (Figure 4.4). The daily average wind velocity oscillated 

around fourkmh
-1

 and the maximum rarely exceeded 19kmh
-1

 though the highest frequency 

runs for several days at the minimum wind speeds of less than five kmh
-1

. The general trend 

for the wind frequency and strength of Mara between the 9
th

 to 13
th

week in 2019 had constant 

wind frequency and strength experienced probably because of the dynamics of weather 

pattern which indicates the consistency of climate parameters that influenced the vegetation‟s 

environment in the ecosystem as characterised in table 4.1 and 4.2. 
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Figure 4.5: General 30 minutes‟ wind rose behaviour in Mara rangeland ecosystem as 

observed by Bowen‟s Ratio System 

Figure 4.6 shows the strength and wind speed within Maasai Mara ecosystem mainly 

range between 4.0 to 7.9 km/hr and at some point wind moves at high speed of a maximum of 

between 15.7 to 19.6km/hr of which in most cases the wind blows from North West (NW) 

direction to the East (E) and to the South-East (SE). The measurements are taken using 

Bowen‟s Ratio system on hourly basis however; this could be averaged into daily basis 

dataset. 

 

Figure 4.6: General weekly 30 minutes‟ wind rose pattern as observed by Bowen‟s ratio 

system for the period of March 2019



83 

Table 4.1: Spatially distributed soil moisture, soil temperature and soil sampling stations 

Station ID Coordinates       

 Latitudes    Longitudes Slopes Date       

installed 

Installation 

time 

Decagon 

logger-1D 

20m    

radius 

5TM-ECH2O 

Profile depths 

         

Mara Main -1.49332 35.14918 Upper-

Plateau 

27-7-2017 1040 5G106354 Grassland 5,10,20,40,80 

Kissinger -1.55889 35.23664 Upper-

Plateau 

30-12-2017 1540 EM37042 Grassland 5,10,20,40,80 

Ashnil -1.45291 35.07215 Upper-

Plateau 

30-12-2017 1100 5G106351 Isolated 

shrubs 

5,10,20,40,80 

Mara-Bridge -1.53833 35.03615 Upper-

Plateau 

25-12-2017 1700 5G106361 Grassland 5,10,20,40,80 

Helicopter -1.53042 35.17422 Lower slope 25-6-2018 1330 EM27041 Grassland 5,10,20,40,80 

Olimisigioi -1.50384 35.12008 Mid-slope 22-6-2018 1750 EM37044 Grassland 5,10,20,40,80 

Talek -1.46117 35.18276 Mid- slope 27-6-2018 1035 5G0D2637 Shrubs, 

Grassland 

5,10,20,40,80 

Upstream -1.52919 35.23824 Mid-slope 28-6-2018 1320 EM42521 Grassland 5,10,20,40,80 

V-section -1.46249 35.10616 Mid-slope 25-6-2018 1100 5G106363 Grassland 5,10,20,40,80 

Nice - Bridge -1.49519 35.19034 Lower slope 24-6-2018 1700 5G0D2640 Grassland 5,10,20,40,80 
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Table 4.2: 5TM-ECH2O sensors measurement detail including site name, geographic location, elevation vegetation cover/land use, aboveground 

biomass, and textural class 

Site            Lat/Long Elevation (m) Vegetation Cover/Land 

Use 

Wet season 

AGB (kgm
-

2
) 

Dry Season 

AGB(kgm
-2

) 

Mara 

Rangeland 

Textural Class 

Mara main -1.49332/35.14920 1540 Open grassland/grazing 0.409 0.328 SCL 

Kissinger -1.55889/35.23664 1660 Open grassland/grazing 0.589 0.366 SCL 

Ashnil -1.45291/35.07215 1540 Trees/sparse 

shrubs/grazing 

0.437 0.371 SC 

Mara Bridge -1.53833/35.03615 1600 Open grassland/grazing 0.308 0.264 SCL 

Helicopter -1.53042/35.17422 1540 Open grassland/grazing 0.413 0.389 SCL 

Olimisiogioi -1.50384/35.12008 1520 Mixed grassland and 

shrubs/grazing 

0.397 0.365 SC 

Talek -1.46117/35.18276 1540 Mixed grassland and 

shrubs/grazing 

0.412 0.357 SCL 

Upstream -1.52919/35.23824 1600 Open grassland/grazing 0.423 0.354 SC 

V-section -1.46249/35.10616 1520 Open grassland/grazing 0.411 0.355 SCL 

Nice Bridge -1.49519/35.19034 1540 Open grassland/grazing 0.414 0.366 SCL 

 

Tables 4.1 and 4.2 shows the geographical location of 5TM-ECH20 probes distributed across rangeland. The ecosystem is occupied by mainly 

dominant grass vegetation and distributed sparse shrubs; the soil texture on the top 5cm depth layer was mainly homogeneous sandy clay soil 

because 30% of the sites texture was sandy clay (SC) while 70% is made of sandy clay loam (SCL) at the bottom soil layer. 
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 The mean particle fraction observed across the rangeland was distributed as 67% sand, 

25.3% clay and 7.7% silt. The 5TM-ECH20 probe sites were distributed to represent the 

distribution of soil moisture over the natural grassland entirely occupying approximately 70% 

grass cover and about 20% shrubs, 10% tall trees along the streams of Mara and Talek river 

catchment. The effective rooting depth for the Mara grassland was between 0.3 and 0.45m 

due to compacted layer, which was observed mainly at around 0.45m depth and this was due 

to decreased total organic matter concentration from the surface layer. 

4.2 Spatial Physical and Chemical Properties Soil Sampling Campaign 

This section shows the result of soil samples excavated from ten 5TM-ECH20 soil 

moisture stations and laboratory analysis to determine; their soil texture, total organic carbon 

(TOC), soil organic matter, particle density, and bulk density, which were  subsequently used 

to calculate gravimetric water content. The laboratory analysis performed was meant for the 

calibration of the CRNS and subsequent determination of soil moisture storage capacity. 

Volumetric water content was spatially determined from different spatial moisture and 

concentrically distributed 5TM-ECH20 probe stations with varied profile depths as indicated 

in tables 4.10 to 4.13. 

4.2.1 Soil Texture 

Table 4.2 shows a range of soil types of MMNR rangeland ecosystem and it was observed 

that almost homogeneous sandy clay loam (SCL) in locations and profiles dominant with 

62% (SCL) and should add up to 38% distributed as 28% (SC), 8% (SL), 2% (C) and appears 

different as depth increases from the top soil surface to the bottom level. The soil type at the 

top 2.5cm with distance of 10m away from the centre of the cosmic ray neutron sensor are 

sandy loam (SL) attributed to high organic content with the mean particles size distribution 

76.6% sand, 16.3% clay and 7% silt. This was tested within six sample locations 

concentrically distributed at angles of 60 degrees as A60, A120, A180, A240, A300 and 

A360, 0. Classifications for the unconsolidated parent   material were made according to 

USDA texture classes, with coarse (S, LS, SL or approximately sand > 50% and clay 20%), 

medium (L, SCL, CL, Si, SiL, SiCL), and fine (SC, SiC, C or approximately clay > 40%) 

textures being used. The spatially distributed distance from the centre of the cosmic ray 

neutron sensor were at intervals of 10m, 25m, 50m, 75m, 150m and 175m. The soil type at 

25m distance from the CRNS at the profile depth of 12.5cm were made of sandy clay loam 

(SCL) with mean particles size distribution percent of 67% sand, 25.3% clay and 7.7% silt 

(Appendix B.3). Soil samples were also collected from 10 spatially distributed soil moisture, 

soil temperature stations with varying depths profile ranging from 10cm to 80cm depth. Soil 
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type at the Mara main station were sandy clay loam (SCL) within the top soil depth range of 

0-10cm while below 10cm and between 10-80cm depth, the soil is sandy clay with mean 

particle size distribution of 71% sand, 22% clay and 7% silt and 55% sand, 39% clay and 7% 

silt respectively.  

Table 4.3: Spatially distributed soil textural classes varied with depths across the Maasai 

Mara National Reserve rangeland ecosystem 

Key: SC – Sandy Clay, SCL – Sandy Clay Loam, SL – Sandy Loam, C- Clay 

S. No. Station Soil Depth (cm) 0-5 5-10 15-20 35-40 75-80 

1. Mara Main Soil Texture SCL SCL SC SC SC 

2. Kissinger ,, SCL SCL SCL SCL SCL 

3. Ashnil ,, SCL SL SCL SCL SCL 

4. Mara Bridge ,, SCL SL SCL SCL SCL 

5. Helicopter ,, SL SL SCL SCL SCL 

6. Olimisiogioi ,, SCL SCL C SCL SC 

7. Talek ,, SCL SCL SC SC SC 

8. Upstream ,, SCL SC SC SC SC 

9. V-section ,, SCL SCL SC SC SC 

10.  Nice-Bridge ,, SCL SCL SCL SCL SCL 

 

The area like Olimisigioi has varied soil layers from top 0-10cm with sandy clay loam, 

clay soil at 20cm, sandy clay loam at 40cm while at 80cm the soils are sandy clay. The soil 

texture of most of the soil moisture, temperature stations namely, V-section, Nice Bridge, 

Talek, Helicopter, Olimisigioi, Upstream, Kissinger, Ashnil and Mara Bridge are made of 

sandy clay loam for the first layer 0-10cm depth. The layers below from 20-80cm have 

variable soil types with mainly sandy clay except nice bridge with uniform sandy clay loam 

from top to bottom layer. The results of soil texture grade indicate that in this natural 

grassland vegetated ecosystem, the soil surface layers across the catchment are mainly sandy 

clay loam with dominant grass species for suitable for grazing wildlife over many decades. 
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Figure 4.7: Soil texture classification (Saxton, 2006) 

The mean particle size distribution ranged between 60-77% sand, 20-27% clay and 6-15% 

silt for the top layer depth range of 0-10cm while for sub soil layers below 10cm to 80cm 

most soils are sandy clay with mean particle size distribution ranging from 54-68%sand, 22-

38% clay, and 6-10% silt soil. Aliku et al. (2016) conducted a study in Nigeria and found that 

the clay and sand contents of Savannah and Derived savannah soils increased with depth, 

while those of rainforest soils decreased and increased, respectively, with depth. The clay 

concentration varied from 6.75 to 14.9 percent in Savannah, 19.07 to 35.35 percent in derived 

savannah, and 26.2 to 17.3 percent in rainforest from the surface down to a depth of 60 

centimetres. However, in the rainforest, the sand content increased from 64.2 to 78.4%, while 

in the savannah and derived savannah, it declined from 92.2 to 84.2% and 76.6 to 61.3%, 

respectively. The author discovered that the soils in the three-agro ecological zones of 

Nigeria ranged from loamy sand to sandy clay on the surface, but only slightly between sandy 

clay loam and sandy clay in the subsurface. 

4.2.2 Total Organic Carbon 

The total organic carbon (TOC) % decreases downwards with soil depths with much of the 

concentration found in the soil surface layer starting from 0-5cm, 5-10cm, 15-20cm, 35-40cm 

and 75-80cm with Mara main site with the highest TOC concentration as 2.25%, 2.00%, 

1.49%, 1.13% and 1.04% (Table 4.4). This was followed by Ashnil sites having 2.11%, 

1.81%, 1.47%, 1.11%, and 0.42% with depth respectively. The collected soil samples from 
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the 5TM-ECH2O sensor stations were analysed through dry combustion following Walkey 

and Black procedure (Nelson & Somners, 1996). 

Table 4.4: Maasai Mara National Reserve sites total organic carbon concentration measured 

according to soil depths. 

  Soil Depth (cm) 

  

Site TOC (%) 

Port 1 

(0-5cm) 

Port 2  

(5-10cm) 

Port 3  

(15-20cm) 

Port 4  

(35-40cm) 

Port 5  

(75-80cm) 

Mara Main 2.25 2.00 1.49 1.26 1.04 

Kissinger 2.39 1.95 1.58 1.32 0.82 

Talek 2.28 1.84 1.75 1.16 0.98 

Nice Bridge 2.29 1.98 1.72 0.92 0.46 

Upstream 1.85 1.62 1.41 0.92 0.53 

Helicopter 1.85 1.66 1.34 0.8 0.52 

Ashnil 2.11 1.81 1.47 1.11 0.42 

Olimisiogioi 2.3 2.13 1.86 1.2 0.64 

V-Section 1.95 1.64 1.26 0.99 0.74 

Mara Bridge 1.81 1.62 1.31 1.1 0.92 

Sample Mean 2.11 1.83 1.52 1.08 0.71 

 

Kissinger site has the least concentration of TOC ranging from the top soil surface content 

of 2.39% and the least 0.82% as compared to the other sites in the catchment. Most of the 

TOC concentration varied according to the nature of the surrounding vegetation, presence of 

dead and living organisms, which gradually decomposed increasing the levels of litter quality 

and organic matter caused by increased temperature and soil moisture influence in rangeland 

ecosystem. Here, lower temperature resulting from increases soil moisture content on the 

surface layers would cause less microbial activity and enzymatic oxidation of organic matter 

to produce soil respiration. Vather et al. (2018) found that soils with an organic matter level 

of 6–10% have a greater potential to retain water. Soil texture, together with organic-matter 

content, affects water-holding capacity and erodibility and provides oxygen to plant roots. 

Table 4.5 shows that the rangeland ecosystem consistently tends to increase in soil 

porosity from the surface layer as hydraulic conductivity decreases downwards and that 

increase in infiltration, aeration, percolation of water and their canopy cover reduces runoff 

and erosion hazards. According to Howard and Howard (1990), organic matter content of less 
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than 1% is considerably low and are limited to desert areas while organic matter of more than 

20% by weight are mainly peat soils which on low or high extremes reduce soil productivity. 

The normal estimates of OM from loss-on-ignition (LOI) method are transformed to SOC 

usually assuming that 58% (1.724) of OM as composed by carbon (Ball, 1964). The average 

ideal soil consists of only 5% organic matter mainly composed of carbonaceous substances 

with soil biomass and remains of dead and living organisms. This implies that the soil at 

Maasai Mara rangeland due to its adaptive suitable favours the growth of grass vegetation 

with gradual topography, dominant flat surface, and homogeneous soils aggregated due to 

cyclic restorations of dead and living organisms. 
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Table 4.5: Sampled Ashnil site particle size distribution, total organic carbon, soil organic matter and texture class 

Depth 

(cm) 

Sensor 

Horizon 

pH 

(H20) 

Total 

Organic 

Carbon 

(%TOC) 

%SOM 

(%0C*1.724) 

Mean Particle Size 

Distribution 

Porosity 

(%) 

Hydraulic 

Conductivity 

(Ks) 

Textural 

Class 

     %Sand %Clay %Silt    

0-5 Port 1 5.53 2.11 3.64 68 23 9 40.5 40.18 SCL 

5-10 Port 2 6.26 1.81 3.12 67 25 8 40.7 39.61 SCL 

10-20 Port 3 5.81 1.47 2.53 58 35 8 42.0 30.51 SCL 

35-40 Port 4 5.72 1.11 1.91 60 34 6 41.8 33.30 SCL 

75-80 Port 5 5.86 0.42 0.72 59 34 8 41.8 31.41 SCL 

 

The total organic carbon concentration for most soil shows that the percentage carbon for the top soil is higher than the bottom soil layer 

where most of the stations had >2.0% (2.11) upper layer while for the lower layer total organic carbon was <1.0% (0.42). Following the method 

by Howard and Howard (1990), the SOM was computed by multiplying the organic carbon concentration with Conventional Vanbameller factor 

of 1. 724. This indicates that soil organic matter the Maasai Mara rangeland ecosystem constitutes between 0.5 to approximately 4% by weight 

of the topsoil in upland soils.  
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Figure 4.8: Total organic carbon and soil organic matter at three sampled 5TM-ECH20 

stations 

Figure 4.8 shows similar characteristics of TOC with depth applicable to all sites across 

the entire ecosystem with decreased TOC concentration. In the analysis of variance, it was 

found that total organic carbon had significant difference in concentrations with depth at 

different sites in reduced concentration. The TOC and SOM concentration respectively 

decreased with increased depth near the soil surface, high concentration of TOC accumulated 

and spatially spread across the ecosystem. However, the effective rooting depth of the 

vegetated grassland was approximately 0.45m in depth. The concentrations were significantly 

higher at Mara main site (coordinates) as compared to Kissinger and Ashnil sites, which had 

significantly lower concentrations. However, the concentration at P1 (0-5cm) and P4 (35-

40cm) had closely similar and higher concentrations compared to other depths P2 (5-10cm), 

P3 (15-20cm), and P5 (75-80cm) in the three selected sites which acted as the representative 

samples. The Mean Square Error (MSE) was 1.675 indicating a more accurate concentration 

estimate percent for all sampled TOC from the ten-5TM-ECH2O probe ecosystem sites. 

Analysis of variance also shows that, total organic carbon concentration an indicator of 

organic matter presence in the soil and contributor to moisture retention varied between 0.028 

and 0.051, its standard deviation ranged from 0.167 to 0.226 (%), standard error ranged 

between ±0.053 and ±0.071, and coefficient of variation ranged from 0.102 to 0.319. The 

physical and chemical properties depicted significant difference with depth across the 

rangeland ecosystem but the properties did not significantly affect soil moisture variation 

which shown homogeneous characteristics on vegetation distribution particularly in dominant 

grassland. 
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4.2.3 Bulk Density 

The samples were taken to the laboratory for the determination of the compacted soil bulk 

density and the results were as follows; for soils at the Main Mara station and according to 

the soil depth, 0-5cm, 5-10cm, 15-20cm, 35-40cm and 75-80cm, the soil bulk density were 

1.40g/cm
3
, 1.45g/cm

3
, 1.34g/cm

3
,1.19g/cm

3
and 1.25g/cm

3
 respectively. This indicates that 

surface layer in this area have high bulk density as compared to the bottom layer density as it 

decreases gradually with depth.  

Table 4.6: Maasai Mara National Reserve sites soil bulk density in with soil depths 

  

Soil Depth (cm) 

 

Location-ID 

Port 1  

(0-5cm) 

Port 2 

 (5-10cm) 

Port 3  

(15-20cm) 

Port 4 

 (35-40cm) 

Port 5  

(75-80cm) 

 g cm
-3

 g cm
-3

 g cm
-3

 g cm
-3

 g cm
-3

 

Mara Main 1.40 1.45 1.34 1.19 1.25 

Kissinger 1.52 1.62 1.71 1.72 1.52 

Talek 0.98* 1.10 1.75 1.35 1.19 

Nice Bridge 1.18 1.29 1.27 1.09 1.12 

Upstream 1.17 1.27 1.12 1.21 1.16 

Helicopter 1.37 1.11 1.33 1.13 1.10 

Ashnil 1.64 1.55 1.63 1.55 1.22 

Olimisiogioi   0.84* 1.13 1.00 1.22 1.35 

V-Section     1.24 1.20 1.15 0.93* 1.28 

Mara Bridge    1.16 1.18 1.07 1.26 1.14 

Sample Mean 1.25 1.29 1.34 1.27 1.23 

*Aterisks are core ring samples Not Full (NF) 

The bulk density of soil at Kissinger soil moisture, soil temperature station shows that it 

oscillates between 1.72g/cm
3
 and 1.52g/cm

3 
at 0-5cm and 75-80cm soil depth respectively. 

This indicates that soil density depends highly on soil mineral particles, which are aggregated 

depending on soil profiles. Most of the soils in MMNR ecosystem have bulk density 

depending on the soil structure and texture that varied from 1.2g/cm
3
 to 1.75g/cm

3
 across 

profiles (Appendix B.5) with mean range of 1.23g/cm
3
 and 1.34g/cm

3 
except for the unfilled 

core rings hence bulk density ranged between 0.84g/cm
3
and 0.93g/cm

3
. The rangeland 

ecosystem as a whole shows no statistically significant variations in mean bulk density 

between depths P1 (0-5cm) and P5 (75-80cm), as determined by an analysis of variance. The 
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bulk density of layer P3 (15-20cm) was measured to be 1.34 gcm
3
, which is much higher than 

the bulk densities of layers P2 (1.29) and P4 (1.27). The ecosystem's bulk density drops 

significantly to 1.23gcm
-3

 at depth P5 (75-80 cm) compared to P1 (1.25gcm
-3

) and P4 

(1.27gcm
-3

). Since the soil is more elastic at P1 and P2 than at P5, the considerable changes 

in bulk density at these depths (35–40 cm) are likely the result of compression at this level as 

a result of higher moisture content. 

4.2.4 Particle Density 

With the same soil samples that were collected from five depths or layers at Mara Main 

station, Kissinger and Ashnil and across the other stations within the catchment, particle 

density was determined based on Bouyoucos Hydrometer method and described according to 

Karkanis et al. (1991) that gave the following tabulated averaged results. Table 4.7 shows the 

average particle density of the soil at the Mara main station on profile depths of 0- 5cm, 5-

10cm, 15-20cm, 35-40cm and 75-80cm shows that the particle density was respectively 

2.46g/cm
3
, 2.37g/cm

3
, 2.5g/cm

3
, 2.38g/cm

3
 and 2.53g/cm

3
. The other 5TM-ECH2O stations, 

that is Kissinger, Ashnil, Mara Bridge, Talek, Nice Bridge, V-section, Olimisigioi and 

helicopter has almost constant average particle densities ranging from 2.40g/cm
3
 to 

2.55g/cm
3
 as shown in appendix B.6). At 75 –80 cm, the particle density of this site was 

again significantly higher at 2.53gcm
−3

 as compared to other sites. Across MMNR rangeland 

ecosystem, it can be observed that no significant difference in particle density signifying 

homogeneous total porosity across the ecosystem. The bulk density also has variance ranging 

from 0.016 to 0.074, standard deviation between 0.127 and 0.272 gcm
-3

, standard error 

ranged between ± 0.016 and ±0.068, and coefficient of variation ranged between 0.013 and 

0.086 across the catchment. The other properties such as particle density varied between 

0.005 and 0.011, standard deviation ranged between 0.071 and 0.106 gcm
-3

, standard error 

ranged from ± 0.022 to 0.034, with coefficient of variation from 0.029 to 0.043.  
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Table 4.7: General particle densities of Maasai Mara National Reserve according to soil 

profiles 

  

Soil Depth (cm) 

 

Site 

Port 1  

(0-5cm) 

Port 2  

(5-10cm) 

Port 3 

 (15-20cm) 

Port 4  

(35-40cm) 

Port 5  

(75-80cm) 

 g cm
-3

 g cm
-3

 g cm
-3

 g cm
-3

 g cm
-3

 

Mara Main 2.46 2.37 2.51 2.38 2.53 

Kissinger 2.53 2.42 2.49 2.5 2.48 

Talek 2.44 2.58 2.43 2.43 2.57 

Nice Bridge 2.41 2.49 2.36 2.45 2.42 

Upstream 2.32 2.37 2.39 2.4 2.3 

Helicopter 2.57 2.47 2.31 2.3 2.31 

Ashnil 2.47 2.5 2.49 2.45 2.49 

Olimisiogioi 2.29 2.36 2.37 2.5 2.32 

V-Section 2.27 2.57 2.33 2.31 2.56 

Mara Bridge 2.5 2.44 2.38 2.31 2.53 

Sample Mean 2.43 2.46 2.41 2.40 2.45 

 

From table 4.7 and figure 4.9, the analysis of variance showed no significant differences in 

mean particle density at all soil moisture locations with depth profiles P1, P2, P3, P4, and P5 

(0-5cm, 5-10cm, 15-20cm, 35-40cm and 75-80cm) as indicated. At 5-10 cm, MMNR main 

site was found to have a significant lower particle density of 2.37gcm
−3

 than P1, P3, P4, or P5 

with particle densities of 2.46, 2.50, 2.38, and 2.53 g cm
−3

, respectively. The soil physical 

properties of an area influence the characteristics of soil water storage and retention caused 

by its matrix potential. A study conducted in three ecological zones of Nigeria by Aliku et al. 

(2016), found that bulk density values obtained from the laboratory analysis (1.31 and 1.41 g 

cm
-3

) were significantly lower (p<0.05) than the predicted values (1.66 and 1.55 g cm
-3

) for 

savannah at 0-30 cm and 30-60 cm depths. The authors also noted that bulk density values 

were higher in soils from 30-60 cm depth than 0-30 cm depth for all locations and no 

significant difference between the observed and predicted bulk density values in rainforest 

zone. 
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Figure 4.9: General trend of bulk densities (BD) and particle densities (PD) in variation to 

soil depth across Maasai Mara rangeland ecosystem 

 

Figure 4.10: Selected spatial behaviour of total soil porosity in variation to soil depths 

Figure 4.10 indicates the variation of total soil porosity for selected MMNR representative 

sites in relation to soil depths from 0-5cm, 5-10cm, 15-20cm, 35-40cm, and 75-80cm. The 

state of art ecosystem scenario of soil samples shows the subsequent characteristics. Here, 

sand content ranged from 60 to 80%, clay from 14 to 30% and silt content from 6 to 10%. 

The particle density ranged from 2.3 to 2.7g/cm
3
 while the total porosity varied from 30.1 to 

51% across the ecosystem. 
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4.2.5 Maasai Mara National Reserve Rangeland Ecosystem Soil Chemical Properties 

Table 4.8: Laboratory soil analysis of Maasai Mara National Reserve rangeland ecosystem 

Soil depth (cm) 0-5 10-15 20-25 25-30 

Fertility results Value Class Value Class Value Class Value Class 

Soil pH 5.53 Medium acid 6.26 Slight acid 5.81 Medium acid 5.72 Medium acid 

Total nitrogen % 0.19 low 0.13 low 0.14 low 0.18 low 

Total Org. Carbon 2.12 moderate 1.45 moderate 1.25 low 2.07 moderate 

Phosphorous ppm 5 low 15 low 5 low 10.0 low 

Potassium me% 1.04 adequate 0.48 adequate 1.22 low 1.28 adequate 

Calcium me% 8.7 adequate 14.5 adequate 10.7 adequate 9.8 adequate 

Magnesium me% 1.29 adequate 3.95 high 1.21 low 1.25 adequate 

Manganese me% 0.38 adequate 0.23 adequate 0.40 adequate 1.25 adequate 

Copper ppm 1.79 adequate 3.86 adequate 1.83 adequate 1.98 adequate 

Iron ppm 48.9 adequate 23.6 adequate 45.0 adequate 45.8 Adequate 

Zinc ppm 3.07 low 2.45 low 1.64 low 1.94 low 

Sodium  me% 0.16 adequate 0.39 adequate 0.98 adequate 0.77 adequate 

Table 4.8 indicates that soils of MMNR rangeland ecosystem has varied potential of hydrogen ions classified according to the layers. The top 

surface layer was analysed as 0-5cm, 10-15cm, 20-25cm and 25-30cm with their pH ranges as 5.53 (medium acidic), 6.26 with slight acidity, 

5.81 for medium acidic and 5.72 as medium acidic respectively. The soils of this rangeland are mainly homogeneous across most parts of land. 

The other nutrients that contribute to the suitability of mixed grasses and shrubs growth were also determined and it was found that the following 

macro and microelements concentrations of total nitrogen with their respective layers were 0.19%,0.13%, 0.14% and 0.18% were low in the soil. 

The total organic carbon was also analysed and found present in the soil as 2.12%, 1.45%, 1.25% and 2.07% respectively (Appendix B.7). 
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Macro elements such as phosphorous measured in parts per million were found to be low 

in the soils with 5, 15, 5 and 10 ppm and potassium 1.04 me%, 0.48me%, 1.22 me% and 

1.28me% which were adequate in the soil. The amount of calcium, magnesium, manganese, 

copper, iron, and sodium were adequate in the soil layers while zinc being low in its 

concentration for soils in this ecosystem probably make rangelands suitable for grass biomass 

production since its dominant vegetation of grass mixed with sparse shrubs vegetation. 

4.2.6 Infiltration Rate and Saturated Hydraulic Conductivity 

As observed from figure 4.11, the rate of infiltration was initially high and decreases with 

time as the soil becomes saturated. Within the initial start of infiltration, the rate in mm/min 

was higher and as the water recedes downwards, the rate gradually decreased over time until 

constant infiltration rate was achieved. The gravimetric water content in the soil receded until 

there was no water drainage because of wetting front effect where field capacity (water 

holding capacity) was attained after 13 mins with the soil infiltration rate of 2.17cm/hr or 

(21.7mm/hr). As observed from the figure, cumulative soil infiltration rate was higher 

because the dry soil had low initial water content or no moisture, thus high saturation 

hydraulic conductivity.  

 

Figure 4.11: Infiltration rate at sampling sites of Maasai Mara National Reserve rangeland 

ecosystem during the dry season 

Similar studies conducted by Rietkerk et al. (2000) and Li et al. (2004) shown that 

vegetation covered soil surface has a higher infiltration rate than bared soil reasons being 

plant roots tend to increase infiltration better because of its enhanced soil water retention. The 
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initial rate at which water entered into the soil depended upon the soil texture, organic matter, 

and cation exchange capacity and soil conditions. The variation in the cumulative infiltration 

into the soils depicted different water intake rates within the study locations. Generally, dry 

soil permitted faster infiltration rates because of low initial soil moisture content than when if 

the soil moisture was high. 

The homogeneous description of soil in the study area indicates that the soils mainly sandy 

clay loam on the top 0-5cm layer were made of decomposed grass residues over time that 

contributed to organic matter forming similar rangeland soil characteristics. The vegetation 

covers similarly characterized as grassland were made of short and densely growth species of 

grasses, which protected the soil surface from excessive runoff and infiltration rate, however 

low moisture retention due surface exposure to evaporation. MMNR being natural grassland 

with sparse shrubs, the results indicate that infiltration rates are slightly higher in medium 

covered surface as compared to extremely bare surface with sparsely vegetated surfaces and 

moderate moisture content. These implies that the overall soil condition and vegetation cover 

in this rangeland ecosystem is dominated with naturally dense grass species that caused low 

surface runoff, high infiltration rate and vice-versa with moderate evaporation characterized 

with homogeneous vegetation cover. Again, the rangeland characteristics was influenced by 

the surface soil texture with high soil porosity due to fine textured soils, low bulk density and 

high particle density including high surface organic matter content. This ecosystem is 

however made of coarse textured soils such as sandy clay loam (SCL), sandy clay (SC), 

sandy loam (SL) and clay (C) based on FAO/USDA classification system of soil textural 

classes. 
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Table 4.9: Analysis of variance (ANOVA) on spatial distribution of volumetric water content with depth at 10 m concentric distance to CRNS 

in Maasai Mara rangeland ecosystem 

Soil Depth 

(cm) 

Volumetric Water Content (m
3
/m

3
) @ 10m 

from CRS footprint 

 

Mean 

VWC 

(m
3
/m

3
) 

Variance Standard 

Deviation 

(m
3
/m

3
) 

Standard 

Error 

Coefficient of 

Variation 

 0
0
, 

360
0
 

60
0
 120

0
 180

0
 240

0
 300

0
 Spatial 

Mean 

V SD SE CV 

P1(0-5) 0.14 0.16 0.16 0.17 0.14 0.15 0.153 0.000 0.012 ±0.005 0.079 

P2(5-10) 0.17 0.18 0.22 0.25 0.18 0.28 0.213 0.002 0.045 ±0.018 0.209 

P3(15-20) 0.19 0.27 0.36 0.36 0.27 0.33 0.297 0.004 0.066 ±0.027 0.223 

P4(25-40) 0.25 0.39 0.43 0.41 0.30 0.36 0.357 0.005 0.069 ±0.028 0.194 

P4(35-40) 0.30 0.42 0.47 0.47 0.38 0.39 0.405 0.004 0.064 ±0.026 0.158 

P5(75-80) 0.40 0.49 0.50 0.50 0.39 0.40 0.447 0.003 0.055 ±0.022 0.123 

Mean 1.45 1.91 2.14 2.16 1.66 1.91      

V- Variance, SD – Standard Deviation, SE – Standard Error, CV – Coefficient of Variation 

From table 4.9, the analysis of variance indicates that the spatial mean soil moisture was significantly different throughout the profile with the 

surface top soil (0-5cm) being the lowest 0.153m
3
/m

3
 and the highest soil moisture content at lower depth (75-80cm) being 0.447m

3
/m

3
 

respectively. This shows that volumetric water content increases with depth, a phenomenon that surface moisture is affected by environmental 

factors such as surface evaporation, rainfall runoff, soil infiltration, deep percolation and plant transpiration has direct influence on water storage 

and retention capacity within the soil matrix. There were four treatments (control (C), warmed (W), precipitation doubling (PPT), and warmed 

plus precipitation doubling (W+PPT), with five replicates for each treatment), and the results were comparable to those found in this study. In all 

soil depths tested, the authors discovered a statistically significant change in soil moisture between treatments (C, PPT, W, and W+PPT) (0–15, 
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15–30, 30–60, 60–90, and 90–120 cm). As for soil moisture frequency distributions, the authors discovered that C and PPT had the wettest 

frequencies across all depths, whereas W+PPT and W had the driest frequencies. Under all test conditions, they also found that soil moisture 

increased with depth. The coefficient of variation for soil moisture was 0.000 – 0.005, while the standard deviation and error were 0.012 – 0.069 

and 0.005 – 0.028, respectively. 

Table 4.10: Analysis of variance on spatial distribution of volumetric water content with depth at 25 m concentric distance to CRNS in Maasai 

Mara rangeland ecosystem (main station) 

Soil Depth 

(cm) 

Volumetric Water Content (m
3
/m

3
) @ 25m 

from CRS footprint 

Mean 

VWC 

(m
3
/m

3
) 

Variance Standard 

Deviation 

(m
3
/m

3
) 

Standard 

Error 

Coefficient of 

Variation 

 0
0
, 

360
0
 

60
0
 120

0
 180

0
 240

0
 300

0
 Spatial 

Mean 

V SD SE CV 

P1(0-5) 0.13 0.16 0.17 0.16 0.15 0.14 0.152 0.000 0.015 ±0.006 0.097 

P2(5-10) 0.18 0.19 0.17 0.23 0.19 0.24 0.200 0.001 0.028 ±0.012 0.141 

P3(15-20) 0.20 0.26 0.39 0.37 0.29 0.36 0.292 0.006 0.075 ±0.031 0.257 

P4(25-30) 0.25 0.39 0.43 0.47 0.30 0.39 0.372 0.007 0.082 ±0.034 0.221 

P4(35-40) 0.29 0.45 0.46 0.50 0.36 0.37 0.405 0.006 0.078 ±0.032 0.193 

P5(75-80) 0.45 0.49 0.50 0.51 0.40 0.44 0.453 0.003 0.057 ±0.023 0.125 

Mean 1.50 1.94 2.12 2.24 1.69 1.94      
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Table 4.11: Spatial distribution of volumetric water content with depth at 75 m concentric distance to CRNS in Maasai Mara rangeland 

ecosystem (Main station) 

Soil Depth 

(cm) 

Volumetric Water Content (m
3
/m

3
) @ 75m 

from CRS footprint 

 

Mean 

VWC 

(m
3
/m

3
) 

Variance Standard 

Deviation 

(m
3
/m

3
) 

Standard 

Error 

Coefficient of 

Variation 

 0
0
, 

360
0
 

60
0
 120

0
 180

0
 240

0
 300

0
 Spatial 

Mean 

V SD SE CV 

P1 (0-5) 0.15 0.16 0.16 0.17 0.14 0.16 0.157 0.000 0.010 ±0.004 0.066 

P2 (5-10) 0.18 0.19 0.18 0.23 0.18 0.24 0.200 0.001 0.028 ±0.011 0.138 

P3(15-20) 0.19 0.23 0.33 0.39 0.27 0.34 0.292 0.006 0.075 ±0.031 0.257 

P4(25-30) 0.19 0.39 0.42 0.49 0.30 0.38 0.362 0.011 0.104 ±0.043 0.288 

P4(35-40) 0.33 0.42 0.46 0.51 0.37 0.36 0.408 0.005 0.068 ±0.028 0.166 

P5(75-80) 0.50 0.48 0.49 0.52 0.39 0.41 0.465 0.003 0.052 ±0.021 0.113 

Mean 1.54 1.87 2.04 2.31 1.65 1.59      
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Table 4.12: Analysis of variance on spatial distribution of volumetric water content with depth at 175 m concentric distance to CRNS in Maasai 

Mara rangeland ecosystem (Main station) 

Soil Depth 

(cm) 

Volumetric Water Content  (m
3
/m

3
) @ 175m 

from CRNS footprint 

Mean 

VWC 

(m
3
/m

3
) 

Variance Standard 

Deviation 

(m
3
/m

3
) 

Standard 

Error 

Coefficient of 

Variation 

 0
0
, 

360
0
 

60
0
 120

0
 180

0
 240

0
 300

0
 Spatial 

Mean 

V SD SE CV 

P1(0-5) 0.17 0.14 0.16 0.16 0.14 0.16 0.155 0.000 0.0122 ± 0.0050 0.0790 

P2(5-10) 0.17 0.19 0.18 0.25 0.16 0.26 0.202 0.002 0.0426 ± 0.0174 0.2114 

P3(15-20) 0.17 0.22 0.36 0.39 0.29 0.35 0.297 0.008 0.0866 ± 0.0354 0.2920 

P4(25-30) 0.19 0.40 0.39 0.56 0.27 0.38 0.365 0.016 0.1263 ± 0.0516 0.3460 

P4(35-40) 0.27 0.44 0.45 0.59 0.34 0.36 0.408 0.012 0.1113 ± 0.0454 0.2724 

P5(75-80) 0.50 0.51 0.49 0.51 0.35 0.34 0.450 0.007 0.8173 ± 0.0334 0.1816 

Mean 1.47 1.90 2.03 2.46 1.55 1.85      
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Table 4.13: Weighted average volumetric water content of spatially distributed 5TM-ECH2O Probes 

Soil Depth          (cm) Weighted average 5TM-ECH20 (m
3
/m

3
) spatially distributed sites 

 

M
a
ra

 M
a
in

 

K
is

si
n

g
er

 

T
a
le

k
 

N
ic

e 
B

ri
d

g
e
 

U
p

st
re

a
m

 

H
el

ic
o
p

te
r
 

A
sh

n
il

 

O
li

m
is

io
g
io

i 

V
-S

ec
ti

o
n

 

M
a
ra

 B
ri

d
g
e
 Mean 

VWC 

(m
3
/m

3
) 

SD 

(m
3
/m

3
) 

SE CV 

P1(0-5) 0.14 0.15 0.17 0.14 0.11 0.13 0.13 0.15 0.16 0.20 0.147 0.0249 ±0.00249 0.1679 

P2(5-10) 0.21 0.19 0.15 0.24 0.14 0.16 0.30 0.28 0.23 0.26 0.216 0.0511 ±0.01615 0.2365 

P3(15-20) 0.21 0.29 0.14 0.26 0.19 0.24 0.31 0.31 0.32 0.31 0.258 0.0616 ±0.01948 0.2388 

P4(35-40) 0.28 0.29 0.18 0.31 0.30 0.18 0.25 0.43 0.29 0.44 0.295 0.0838 ±0.02651 0.2841 

P5(75-80) 0.27 0.40 0.23 0.29 0.32 0.32 0.30 0.45 0.29 0.39 0.326 0.0000 ± 0.0000 0.0000 

Mean  1.11 1.32 0.87 1.24 1.06 1.03 1.29 1.62 1.29 1.60     

 

From tables 4.9, 4.10, 4.11, 4.12 and 4.13, it can be noted that volumetric water content changes with respect to depth on spatial scale (10, 25, 

75 and 175 m) spatial distance varied increasingly at near surface 0-5cm depth to deep 75-80cm depth respectively. The mean VWC ranged 

from 0.153m
3
/m

3 
to 0.447m

3
/m

3
 and their variance ranged between 0.000 and 0.005, standard deviation between 0.012 and 0.069m

3
/m

3
, standard 

error between ±0.005 and ±0.028 and coefficient of variation ranged between 0.079 and 0.223. The distribution of soil moisture with depth is a 

function of environmental influence caused by evaporation at near the soil surface, infiltration, runoff and percolation including the immediate 

soil conditions and surface vegetation cover which determines rooting depth of plants. The deeper the roots of vegetation the farther the soil 

moisture storage from the soil surface, plants roots response positively towards water available soil matrix and elongates as much as possible 

depending on extractable water content in the soil. In this rangeland ecosystem, the grass maximum rooting depth was observed to be 
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approximately 30cm to 45cm and grass height range between 80cm and 120cm respectively 

for nearly similar grass species. The grass roots were dense at near the soil surface as 

compared to bottom-layered soil. The standard deviation per soil moisture station was 

0.104m
3
/m

3
. The coefficient of variation (CV) also ranged from 0.097 to 0.257 and the 

significant difference at ≤ 0.05 probability level was 0.428. The soil moisture significant 

differed from P1 to P5 (0-5cm) to (75-80cm) depth across all the moisture stations in the 

rangeland ecosystem. 

Table 4.14: Analysis of variance on volumetric water content as per 5TM-ECH20 Soil 

Moisture, Temperature Capacitance Probes 

Source Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

0.371 5 0.011 ≤0.05 95 0.181 0.352 0.624 

Within 

Groups 

0.194 30 0.033      

Total  35       

P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation, LSD, least significant difference between means 

Mean Square of Profile (MSP) - 0.011, Mean Square Error (MSE) – 0.033, Sum of Square 

Error (SSE) – 0.073 

Table 4.14 indicates spatial variation of soil moisture and the mean spatial volumetric 

water content ranged between 0.147m
3
m

-3
 at the top soil profile (0-5cm) and 0.326m

3
m

-3
 at 

below the soil depth of 75-80cm respectively. The soil moisture content decreased with 

depth. The standard deviation increased from the top layer to the bottom soil layer ranged 

from 0.0249 to 0.0838m
3
m

-3
 and the standard error ranged from ± 0.0000 to ±0.02651 while 

the coefficient of variation ranged from 0.0000 to 0.2841. It follows that P1(0-5cm) profile 

has significantly less moisture as compared to spatial means of all stations depths for P5(75-

80cm) except at Kissinger which has no significantly different soil moisture at depth P3 and 

P4 (15-20, 35-40cm). In addition, at Talek site, the soil moisture was significantly less at all 

depths and significantly more as compared to Olimisiogioi location except at Kissinger 

location. The sum of squares of all data values (SS) was 0.371; sum of squares of the all 
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blocks (replicate) values was 0.194 and the sum of squares of all treatments (variety) was 

0.103. The least significant difference (LSD) between means at 5% level of probability (≤ 

0.05) or 95% level of confidence was 0.624 and the F ratio was 0.352 with the degrees of 

freedom (df) of 49, mean square error (MSE) of 0.033 and sum of square error (SSE) of 

0.073. The volumetric water content variance ranged from minimal value of 0.001 to 

maximum value of 0.008, standard deviation from the mean ranged between 0.167 and 

0.226m
3
/m

3
, standard error ranged between ±0.008, ±0.028, and coefficient of variation 

between 0.166 and 0.295 across the rangeland ecosystem. 

 

Figure 4.12:Time series trend of rainfall correlation to volumetric water content between 

Nov 2017 and April 2018. 

Figure 4.12 shows time series variation of volumetric water content in relation to rainfall 

events, which occurred in 2017 and Mid-April2018, it can be noted that rainfall was high in 

the month of April and May 2018 with depicting rainfall range of 0.89 to 3.91 mm with 

volumetric water content ranging from 0.40 to 0.436 m
3
/m

3
. A time series of the CRNS soil 

moisture data showed the dependency of the soil moisture fluctuations on rainfall. This could 

be deduced that the top soil moisture is low at near land surface VWC1 (0-5cm) due to the 

effects of runoffs, evaporation, and percolation of rainwater. Garcia-Ruiz (2010) noted in a 

study conducted in the Mediterranean settings of Spain that vegetation may alter the soil's 

physical qualities, such as bulk density, physical composition, and porosity. The pace of 

infiltration, amount stored, and where it goes are all affected by these shifts in the soil (Lipiec 

et al., 2006). But the temporal change was reasonably smooth in the 80-120 cm deep soil 

layer, indicating a distinct lag in reaction to precipitation. Ursulino et al. (2019) demonstrated 

that soil moisture behaviour is a function of precipitation in two stations (S1 and S2) in the 

Tropical Experimental Basin, and their findings were consistent with those of the current 
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study. Soil water content was found to have increased by a maximum of 0.32 and 0.33 

cm
3
cm

-3
 in S1 and S2, respectively, during the 15 mm rainfall episodes from May to July 

2015. Soil moisture increased suddenly at the end of May 2015 due to a 61 mm rainfall event, 

but after that, it remained more or less constant in S1 and S2 until the conclusion of the rainy 

period in July. More increases are pronounced with oscillating declines in soil water content 

during rainfall events in 2016 as compared to 2015. During the  period of prolonged dryness 

or no rains or little rains (blue lines), fraction of soil moisture remains in the soil (red lines) 

and this was depicted during the previous year in periods of 2017 and 2018 with rainfall 

range between 0,0.59 to 1.29 with VWC range between 0.25 to 0.38 m
3
/m

3
. At the point 

where there is no element or invisible rainfall traces means that the VWC signals seen in the 

graph indicates retained moisture content within the soil shallow layers or that the sensor 

signals could read zero in case of obstruction from taking the signals especially in deeper 

layers. This indicates that soil moisture retention in soil enables rangeland vegetation survive 

under stored moisture during seasons of no rainfall for a certain period before permanent 

wilting threshold was attained in plants causing complete drying.  

 

Figure 4.13: Trend of Nice bridge volumetric water content with respect to soil layers for 

2018-2019 

From the figure 4.13, It was evident that high moisture content was available within the 

VWC4 (35-40cm) soil layers during the month of July through to December 2018. This could 

be due to water redistribution and ground recharge before reaching the bottom VWC5 (75-

80cm) layer. Again, there was subsequent low moisture at the beginning of January to April 

2019 due to low rainfall and high temperature during the period. Similarly, Bell et al. (2010) 
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discovered that in a tall grass prairie experiment, soil temperatures were higher in the 

experimental warming treatments (W and W+PPT) than in the non-warming controls across 

the board (at the surface, 7.5 cm, 22.5 cm, 45 cm, 75 cm, and 105 cm) (C and PPT) down 

respectively. The researchers discovered no statistically significant change in soil temperature 

between C and PPT across any depth, and similarly found no difference between W and 

W+PPT. The investigation also showed that the soil temperature changed very little between 

the surface and 105 cm in the PPT and C plots, whereas it decreased by about 3°C in the W 

and W+PPT plots. The soil temperature was lowest in the W+PPT and W plots across all 

tiers, with the W plots maintaining their low temperature throughout. 

 

Figure 4.14: Trend of monthly soil moisture and temperature variation per depths at 

Kissinger 5TM-ECH20 site: 2018-2019 

Figure 4.14shows the volumetric water content, temperature, and it can be deduced that 

with low temperature, soil moisture content is high and high temperature causes low moisture 

storage and retention, which is inversely proportion to each other. Wu et al. (2014) found that 

the relationship between the two environmental factors indicates that for soil moisture to be 

stored for a long period after rainfall, low temperature, infiltration rate, rainfall runoffs and 

deep percolation must coexist within the soil and this relies greatly on soil texture and 

structure. This slow decline can be traced back to the extensive evaporation and transpiration 

of water from the soil at that time. Crop cover was insufficient at the time to prevent further 

soil evaporation. This demonstrates that soil strata got soil water at different times. Only 

when the soil is completely saturated, or has achieved its field capacity, does any further 

water in the soil become available to seep downward via the soil profile. These results are 
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consistent with those of an experiment on water application in an irrigation scheme 

conducted by John Mthandi et al. (2014), who discovered that water had to slake the thirst of 

the uppermost soil profiles before it could reach the bottom layer. This finding is consistent 

with what has been reported in the literature, which explains that the action of surface 

evaporation causes higher changes of soil water contents in the lowest layers of soil profiles 

compared to the top layer. 

 

 Figure 4.15: Variation of Ashnil site soil moisture and temperature at different soil profiles 

Figure 4.15 shows similar behaviour in soil water and temperature relations, which 

indicates an inverse proportional characteristic in that during the month of September through 

December 2017, there was low moisture due to high temperature and oscillating variation of 

soil moisture with temperature. Low moisture content was also experienced at near surface 

layer VWC1 (0-5cm) and high below soil surface oscillating between VWC4 (35-40cm) and 

VWC5 (75-80cm) layer respectively. In a study done by Niu et al. (2015), showed that 

vertical soil water profile exhibited seasonal patterns for different land uses and stable layer 

of soil moisture was found at 80-120cm depth. Moisture showed a stable (high-low-high low) 

trend with wave changing type at 0-120cm in other land use except in grassland, which 

gradually decreased with depth from 100 to 120cm, which was not consistent with the 

findings of Gao et al. (2014). 

From the selected rangeland sites, the characteristics of soil moisture behaved 

homogeneously with depth across the ecosystem with soil textural class of sandy clay loam 

(SCL) at the top soil surface VWC1 (0-5cm) layer throughout the season. It was also 

observed that the trend of volumetric water content spatially distributed across the ecosystem 
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with depth shows top soil layer P1 (0-5cm) is significantly low moisture content as compared 

to deep shallow layers P4 (35-40cm) and P5 (75-80cm). Zehe et al. (2010) observation that 

the length of spatial correlations changed with soil moisture levels was supported by these 

results. This, however, demonstrates how different controls can cause a deviation from the 

norm and either increase or decrease soil moisture variation (Das et al., 2008; Wu et al., 

2012). On the other hand, dampness was observed to boost the correlation scale in grasslands 

but not forests. As seen from the figure 4.19, the trends have similar characteristics across 

sites within the ecosystem, a clear indication of dominant vegetation adapting to grassland 

natural environment.  

Table 4.15: Cosmic ray volumetric water content according to soil layers at Mara Main 

station 

Soil 

Depth 

(cm) 

corrN (ch
-1

) 0N (ch
-1

) b (gcm
-3

) lattice  

(gg
-1

) 

waterSOM

(gg
-1

) 

Average 

 VWC 

(m
3
m

-3
) 

Effective 

Depth 

(cm) 

0-5 565 1441 1.40 0.03 3.64 0.34 11 

5-10 565 1430 1.45 0.03 3.12 0.35 11 

10-15 565 1414 1.34 0.03 2.53 0.32 11 

15-20 565 1388 1.19 0.03 1.91 0.29 12 

20-25 565 1363 1.25 0.03 1.52 0.30 12 

25-30 565 1269 1.22 0.03 0.72 0.29 12 

corrN – corrected neutrons, 0N – Average neutron intensity, b - Dry bulk density, lattice  - 

Lattice water, waterSOM - Soil organic matter expressed as water equivalent. 

Table 4.15 shows the average bulk density, wlat, and wSOM for each point in degrees of the 

Main Mara site where CRNS data values were collected. This indicates low moisture near the 

soil surface and high moisture content below the soil surface with low environmental 

influence on soil moisture storage and retention across the ecosystem. All vegetation relies on 

soil moisture storage and retention despite the rate of root zone depletion, which usually 

enables vegetation adaptation to suitable condition for growth and development. Long and 

short-term seasonal vegetation species adapt itself to a favourable environment where 

available water content is readily utilizable by plants at the root zone. Soil moisture content 

being a major sensitive parameter impacts much on vegetation biomass and yields, however 

climate variables, bulk density, particle density, and total organic carbon concentration 

influence vegetation behaviour and adaptation characteristics. The dry soil bulk density 
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varied from 1.19 g cm
−3 

to 1.45g cm
−3

. In the computation of volumetric soil moisture, the 

bulk density was used to convert gravimetric soil moisture content and determine the 

effective depth to which the CRNS probes measured the soil moisture at a given point ranged 

from 11 and 12cm. The effective measurement depth of CRNS over the 1-year period 

between Dec 2017 and April 2018 (Table 4.15) showed that the effective measurement depth 

ranged from 10.58 cm to 12.48 cm, with an average depth of 11.53cm. The sites had varied 

lattice water (water of crystallization) of 0.02g g
−1

 at its lowest and 0.03g g
-1

at the highest, 

which maybe assumed negligible. Sandy Clay loam (SCL) majorly the top soil has the 

highest waterSOM as compared to the bottom sandy clay soil. The content varied from 0.002 

to 0.03 g g
−1

. The range of average N0 values was between 673.48to 899.94 counts per hour 

(ch
-1

) with coefficients of variation during the dry season and 241.12 to 114.71 ch
-1

 during 

the wet season, for sites with its average measurement depths (z*) ranged between 5 and 30 

cm where the soil moisture was a reciprocal to the depths. 

 

Figure 4.16: Time series of daily rainfall and moderated neutron counts during the period 

2017 and 2018 at Maasai Mara National Reserve. 

The minimum and maximum depths of measurement were 5cm to 80cm with soil moisture 

ranged from as high as 0.35m
3
m

-3
 to 0.29m

3
m

-3
 respectively and to 0 m

3
m

-3
 for dry soils at 

the 80cm bottom soil layer across the concentric distance. This shows that between 10m to 

175m away from the CRNS footprint, fraction of soil moisture exists where general cover is 

of dominant grassland and it signifies that grassland soil does not reach complete dryness 

between the bi-seasons. 
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4.3 Moderated Neutron Counts 

Figure 4.16 depicts the daily precipitation and moderated neutron counts at the study site 

for the years 2017 and 2018. As a result of varying precipitation, it is observable that the 

adjusted moderated counts reduce quickly with precipitation and climb gradually according 

to an exponential curve. Since the moderating effect provided to neutrons by hydrogen atoms 

is inversely proportionate, the predicted CRNS soil moisture increases rapidly after a 

rainstorm event. Time to respond is faster, and apparent soil moisture is higher in the CRNS. 

Soil moisture increases in proportion to increases in rainfall, but decreases progressively 

because of high temperature in the generated CRNS, as the soil dries out. 

 

Figure 4.17: CRNS temporal simulation trend of soil moisture content receding after rainfall 

event 

Figure 4.17 shows the CRNS simulations of soil moisture after a rainfall event and it 

indicates that moisture depletes with time due to evapotranspiration from 0.12m
3
m

-3
 and 

receded for a period of 10 days before an additional event of rains, which eventually raised 

the moisture content to over 0.22m
3
m

-3
. Due to fluctuating moisture levels, it can be noted 

that in dry period there was steady decline of moisture loss due to receding behaviour of 

rainfall event and subsequent redistribution of moisture, which gradually increased from 

initial moisture level for the period of 20 days from the previous rainy events (wet period). 

The transition of wetting front to dryness with time due to soil moisture hysteresis 

dynamically caused soil moisture variations. 

Observed soil moisture 
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Table 4.16: Calibrations, dates, gravimetric soil moisture, bulk density, neutron counts and 

calculated No values. 

Calibration 

(date) 

Moisture 

status 

Gravimetric 

water  

content (g/g) 

Bulk 

density 

(g/cm
3
) 

Volumetric 

water     

content 

(m
3
/m

3
) 

Neutron 

count 

(count/h) 

No 

12/12/2017 Dry 0.129 1.40 0.180 665.747 1647.187 

21/12/2017 Dry 0.097 1.45 0.140 697.625 1724.343 

05/04/2018 Wet 0.219 1.19 0.260 589.417 1462.436 

09/04/2018 Wet 0.295 1.22 0.360 540.708 1344.558 

Mean      1544.631 

 

Based on table 4.16, the calculated average No value for calibrations was 1544.631. The 

hourly VWC was determined using the calculated No value in the rearranged calibration 

function on equation 3.14. The hourly CRNS data (grey line) were converted into daily (blue 

line) average to smoothen the data for comparison with other daily-derived soil moisture 

products. The results show that soil moisture was higher in wet season and lower in dry 

season (Table 4.16) as characterized by Maasai Mara National Reserve ecosystem rainfall 

pattern. In the study, the conversion of the neutron count rate to gravimetric soil water 

equivalent grv was performed according to Desilets et al. (2010) who suggested a 

theoretical relation that has been applied successfully by the majority of CRNS studies. 

4.3.1 Biomass Water Equivalent 

Site-specific calibrations implicitly took vegetation influences on the measured neutron 

counts into account and needed simultaneous measurements of area-averaged soil water 

content and neutron count. Since natural grassland predominates in the MMNR rangeland 

ecosystem, the experimental sites did not exhibit large variations in biomass (grassland). As a 

result, the biomass correction was not necessary; the variation in hydrogen biomass within 

the site was only 1.34mm of H2O, which was negligible and was therefore disregarded during 

the calibration process (Appendix B.9). Franz et al. (2013a) established a method to isolate 

the effect of vegetation on the neutron intensity signal, and their observation and calculation 

of the area average biomass water equivalent were in agreement with independent 

measurements. Measuring N0 levels in fields of maize (Zea mays L.) and soybean (Glycine 

max (L.) Merr. ), Franz et al. (2015) similarly discovered a linear relationship, with N0 levels 



113 

decreasing by 1% for every 1 kg/m
2
 of biomass or water equivalent present. Water equivalent 

to biomass is shown here to decrease as neutron levels rise. 

4.3.2 Root Biomass Density 

Five cored soil samples were collected from MMNR site with homogeneous 

characteristics across rangeland via a core ring of volume 98.175cm
3
 (0.098175lts) at 

different soil layers of 0-5, 5-10, 15-20, 35-40 and 75-80 cm and during the lab 

measurements their ambient/room temperature was taken to be 24
o
C. The samples were used 

to determine the root density of the soil and it was observed that the densities decreased with 

increased depth. The root density at the top soil layer of 0-5cm was higher with 8.098g/l as 

compared to the density at the bottom layer of 75-80cm with 0.682g/l. Fine root distribution 

decreased with soil depth and decreased with distance from the plant stem in sandy clay loam 

soil. The factors that may have contributed to decline in root density depth wise consist of 

increased fraction of silt and clay mineral particles causing soil strength decreased with depth 

in soil organic matter, aeration and its fertility. 

 

Figure 4.18: Root density distribution of grass vegetation in Mara ecosystem soil profile 

Figure 4.18 displays a close association between root density distribution and soil profile, 

with a slope of 10.87 on the exponential function and a correlation coefficient of 0.9897. 

Analysis of SWC profiles and moisture temporal changes, such as those caused by infiltration 

and drying redistribution processes, rainfall events, and crop evapotranspiration, provided 

some valuable insight into the root spatial distribution, particularly with regards to root 

density. Due to its native nature, the grass species present within the catchment requires 

minimal moisture content stored within its root-zone. Root length per soil volume is a 

primary factor in the plant's ability to selectively absorb water.  
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Table 4.17: Root density of soil samples as collected from MMNR main sampling site. 

 
Initial soil 

sample 

wgt (g) + 

Beaker 

(g) 

Wgt of 

the 

beaker 

(g) 

Wgt  of the 

beaker for 

measuring I 

litre of water 

(g) 

Wgt of 

the I ltre 

mix of 

soil 

sample 

(g) 

Wgt 

of the 

foil 

(g) 

Wgt of 

Foil + 

Wet 

weigh 

of roots 

(g) 

Wgt of 

oven dried 

roots (g) + 

Foil (g) 

Final 

constant 

wgt after 

oven 

drying.(g) 

Wgt of 

dried 

roots 

(g) 

 

Sample_ID 

Root 

Biomass 

(g/l) 

 
  

Depth (cm) 

 0-5cm 238.0 105.96 264.28 1279.6 2.19 7.31 2.98 2.98 0.80 8.10 

5-10cm 268.7 105.98 264.31 1270.8 2.07 6.57 2.75 2.75 0.69 6.10 

15-20cm 254.3 105.98 264.32 1184.7 2.29 6.03 2.87 2.87 0.58 5.94 

35-40cm 266.7 105.99 264.33 1260.7 2.22 6.66 2.66 2.65 0.43 4.41 

75-80cm 227.8 105.98 265.48 1193.5 1.98 3.90 2.05 2.05 0.07 0.68 

 

The greatest root density is typically found a few centimetres below the surface soil, which dries earliest owing to heat exposure and 

evaporation. Soil water content usually changes with depth across the root zone and measurements based at different depths within the root zone. 

Sala et al. (1996) observed that soil moisture depicts low high low change in profile possibly because of the effects of bulk density and root 

distribution that may have contributed to soil moisture difference. Here, the volumetric water content was obtained by direct sampling of a 

known soil volume and use of a both 5TM-ECH2O capacitance probes and cosmic ray neutron sensor that were used to accurately estimate, v . 
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Table 4.18: Soil moisture variations across rangeland ecosystem according to soil layers 
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   %  

Sand 

%  

Clay 

%  

Silt 

   

Across sites Port 1 0-5 68 23 9 0.35 40.0 212.6 3.863 6.507 89.3 32.69 0.276 0.128 SCL 

Across sites Port 2 5-10 67 25 8 0.35 40.1 226.0 3.255 6.824 89.93 30.83 0.281 0.135 SCL 

Across sites Port 3 15-20 58 34 8 0.35 41.0 405.3 0.944 8.264 109.5 20.80 0.314 0.171 SCL 

Across sites Port 4 35-40 60 34 6 0.35 40.7 355.5 1.148 8.258 101.8 22.04 0.309 0.168 SCL 

Across sites Port 5 75-80 59 33 8 0.35 40.9 378.7 1.090 8.104 107.1 21.73 0.310 0.167 SCL 

 

4.4 Moisture Retention Characteristics 

The moisture retained across rangeland at the soil surface to the subsoil layers was determined for Ten-5TM-ECH2O soil moisture, soil 

temperature stations. The sites were spatially distributed across Maasai Mara rangeland and the results shown that there were changes in soil 

water content as a function of water potential ( ).However, soil from various sites was relatively homogeneous and the bulk densities were 

closely similar with presence of high clay content across the rangeland. Table 4.18 shows the matrix potential across sites in the Maasai Mara 

ecosystem with soil depths. The mean particle size distribution ranged between 59, 68% sandy soil, 23, 34% clayey soil, and 6, 9% silt soil 

forming dominant sandy clay loam (SCL) soil across the ecosystem. The volumetric water content storage averaged at 0.35m
3
/m

3
 for most sites 

as compared with depths in the entire ecosystem. The soil porosity ranged between 40.0 to 41.0 % and its matrix potential of between 212.6 to 

405.3 mm, saturated hydraulic conductivity 20.80 and 32.69 mm/hr.  The distinction between saturated hydraulic conductivity ("Ks") is a 

quantitative expression of the soil's ability to transmit water under a given hydraulic gradient, while hydraulic conductivity (slope "K") defines 
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the proportional relationship between flux and hydraulic gradient, or in this case, of unidirectional flow in saturated soil. There was a wide 

variation in field capacity, with values between 0.276 and 0.314 m
3
/m and wilting point readings between 0.128 and 0.171 m

3
/m. Measured and 

anticipated field capacity values in the savannah zone increased from 13.5% to 15.0% and from 13.9% to 18.3%, respectively, in a comparable 

experiment conducted by Aliku et al. Although the projected values for savannah soils grew with depth from 22.01% to 29.59%, the measured 

field capacity values for savannah soils decreased from 21.34% to 18.78%. 

Table 4.19: Soil moisture characteristics of Maasai Mara rangeland sites for various soil texture denoted as SL – Sandy Loam, SC – Sandy Clay, 

SCL – Sandy Clay Loam, C - Clay 

Site_ID %Sand %Clay %Silt FC 

(m
3
/m

3
) 

WP 

(m
3
/m

3
) 

Saturation 

(m
3
/m

3
) 

Infiltration 

rate 

 (m/hr) 

Available 

Water 

(m
3
/m

3
) 

Bulk 

Density 

(g/cm
3
) 

Textural 

Class 

Mara-main 61 32 7 0.270 0.182 0.479 0.216 0.089 1.40 SCL 

V-section 57 32 11 0.276 0.181 0.483 0.228 0.095 1.24 SCL 

Talek 62 32 6 0.269 0.182 0.479 0.213 0.087 0.98 SCL 

Upstream 56 36 8 0.292 0.199 0.490 0.172 0.093 1.17 SC 

Helicopter 71 25 4 0.234 0.153 0.459 0.378 0.081 1.37 SCL 

Kissinger 62 30 8 0.262 0.173 0.476 0.253 0.089 1.52 SCL 

Nice Bridge 68 26 6 0.241 0.157 0.463 0.348 0.084 1.18 SCL 

Olimisigioi 56 36 8 0.292 0.199 0.490 0.172 0.093 0.84 SC 

Mara Bridge 66 22 12 0.230 0.139 0.455 0.548 0.091 1.16 SCL 

Ashnil 54 38 8 0.303 0.209 0.494 0.157 0.094 1.34 SC 
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Table 4.19 displays the field capacity, permanent wilting point, and water availability at 

several sites throughout the MMNR rangeland ecosystem. The size distribution of mineral 

particles in sand, silt, and clay for each soil layer across the watershed was given in table 

format. The available water content for the catchment sites ranged from 0.102m
3
m

-3
 to 

0.128m
3
m

-3
 due to the presence of sand and clay mineral particles, as well as loam, caused by 

the accumulation of organic matter in the upper soil layer. This shows a decrease in porosity 

because of the cohesiveness of the aggregates comprising the soil's platy structure and its 

high particle density. In general, the soil moisture retention capacities in MMNR are 

indicative of a healthy soil structure resulting from undisturbed decomposition of organic 

matter (humus). According to Huntington (2007), organic matter modifications would have 

the greatest impact on field capacity values due to the hydrophilic nature of organic matter 

and its favourable influence on soil structure. Here, the high water absorption capacity is the 

result of a high proportion of loamy soil. The average distribution of soil textural classes was 

70% sandy clay loam (SCL) and 30% sandy clay (SC) over the entire ecosystem. Aliku et al. 

found in their study that the measured wilting point (WP) values were significantly lower 

than the predicted values at p0.05 in all locations. The observed WP values for savannah soils 

from 0 to 30 cm and 30 to 60 cm depth were 1.07 and 2.80 percent, while the expected values 

were 7.25 and 11.25 percent, respectively. The observed WP values for derived savannah 

(2.81 and 5.44%) and rainforest (4.80 and 3.44%) were lower than their expected values at 0 

– 30 cm and 30 – 60 cm depths, respectively. 

From the observation on table 4.20, the top soil of most sites at 5cm depth is homogeneous 

across the whole of Mara catchment. The mineral particles have almost close range of 

distribution, the %sand ranges between 60 to 80, %clay between 14 to 28 and %silt between 

6 and 14. The soils classified from the soil textural triangles are sandy clay loam, which 

constitute more of total organic matter. The infiltration rate of such soil depicts low rate of 

infiltration due to small pore spaces in between the particles to permit fast infiltration rate. 

Much of water loss led to high rainfall runoffs. The available water in the soil due to its 

matric potential ranges between 0.09m
3
m

-3
 to 0.11m

3
m

-3
, this indicates close homogeneity 

across catchment with mean available water of 0.10m
3
m

-3
, mean standard deviation and error 

of 0.009 m
3
m

-3
 and ± 0.003 respectively. The difference is insignificant and this shows that 

the soil moisture is almost constant in the catchment sites. 
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Table 4.20: Spatial soil water characteristics at0-5 cm soil depth and soil water retention 

Site_ID 

 

Soil 

Depths 

(cm) 

%Sand %Clay %Silt FC 

(m
3
/m

3
) 

WP 

(m
3
/m

3
) 

Saturation 

(m
3
/m

3
 ) 

Infiltration 

rate (cm/hr) 

Avail 

Water 

(m
3
/m

3
) 

Bulk 

Density 

(g/cm
3
) 

Textural 

Class 

Mara-main 5 70 22 8 0.225 0.140 0.453 0.534 0.086 1.450 SCL 

V-section 5 64 22 14 0.232 0.139 0.457 0.556 0.094 1.439 SCL 

Talek 5 68 24 8 0.234 0.148 0.459 0.431 0.086 1.434 SCL 

Upstream 5 60 28 12 0.258 0.164 0.473 0.310 0.094 1.396 SCL 

Helicopter 5 76 16 8 0.198 0.114 0.431 1.138 0.084 1.509 SL 

Nice Bridge 5 72 22 6 0.223 0.140 0.451 0.528 0.084 1.455 SCL 

Kissinger 5 80 14 6 0.186 0.105 0.420 1.531 0.081 1.536 SL 

Olimisigioi 5 64 28 8 0.253 0.165 0.470 0.297 0.088 1.404 SCL 

Ashnil 5 78 14 8 0.189 0.105 0.422 1.524 0.083 1.533 SL 

Mara Bridge 5 68 23 10 0.231 0.144 0.456 0.482 0.087 1.440 SCL 

Average 5 68 23 9 0.19 0.09 0.449 0.733 0.087 1.460 SCL 
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Table 4.21: Spatial soil water characteristics at 5-10 cm soil depth and soil water retention 

 

Site_ID 

 

Soil 

Depths 

(cm) 

%Sand %Clay %Silt FC 

(m
3
/m

3
) 

WP 

(m
3
/m

3
) 

Saturation 

(m
3
/m

3
 ) 

Infiltration 

rate (m/hr) 

Avail 

Water 

(m
3
/m

3
) 

Bulk 

Density 

(g/cm
3
) 

Textural 

Class 

Mara-main 10 72 22 6 0.223 0.140 0.451 0.528 0.083 1.455 SCL 

V-section 10 60 24 16 0.244 0.146 0.465 0.462 0.098 1.419 SCL 

Talek 10 66 30 4 0.257 0.173 0.473 0.242 0.093 1.352 SCL 

Upstream 10 56 36 8 0.292 0.199 0.490 0.172 0.093 1.380 SC 

Helicopter 10 78 18 4 0.203 0.123 0.436 0.859 0.079 1.496 SL 

Kissinger 10 78 14 8 0.189 0.105 0.422 1.524 0.083 1.533 SL 

Nice Bridge 10 70 24 6 0.232 0.148 0.457 0.425 0.084 1.438 SCL 

Olimisigioi 10 60 32 8 0.272 0.182 0.481 0.219 0.090 1.377 SCL 

Ashnil 10 72 22 6 0.223 0.140 0.451 0.528 0.083 1.455 SCL 

Mara Bridge 10 76 16 8 0.198 0.114 0.431 1.138 0.084 1.509 SL 

Average 10 67 25 8 0.239 0.152 0.462 0.390 0.087 1.426 SCL 
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In table 4.21, it indicates that most of the spatially distributed stations have dominant 

sandy clay loam (SCL) below the soil surface layers followed by sandy clay (SC) with 

particle size  distribution range of %sand from 56 to 78, %clay from 14 to 36 and %silt from 

4 to 16. The mean particles distribution is %sand of 67, %clay of 25 and %silt of 8. The soil 

layer 5-10cm depth also shows that the mean available water content is high than the surface 

water content in that storage at the soil surface is highly influenced by evaporation and 

infiltration into the soil such that the holding capacity decreased gradually. The field capacity 

(FC) ranged from 0.15 to 0.22m
3
m

-3
 and wilting point (WP) ranged from 0.06 to 0.11m

3
m

-3
 

with mean capacity of 0.08m
3
m

-3
. The soil saturation ranged 0.35 to 0.44m

3
m

-3
 with a mean 

of 0.39m
3
m

-3
. The infiltration rate beneath the soil surface also shows that there is an increase 

from 3.2 to 4.4 cm/hr or 0.032 to 0.044 m/hr due to a trade-off between the surface runoffs 

and evaporation with the effect of initial soil moisture. Bulk density ranged from 1.35 to 

1.53g/cm
3
, however high density results in low water storage and vice-versa due to 

macrospores in the soil. Within these densities, the available water ranged between 0.11m
3
m

-

3
 and 0.15m

3
m

-3
 with mean of 0.12m

3
m

-3
. The standard deviation of the available water 

content of this rangeland ecosystem with homogeneous soils was 0.014m
3
m

-3
 and the 

standard error of ± 0.005. 

 

Figure 4.19: Weighted average distribution of near surface 5cm depth volumetric moisture 

content according to respective site‟s soil texture 

Figure 4.19 shows the mean volumetric water content of 5cm depth was mainly 0.13m
3
/m

3
 

for most of the spatially distributed 5TM-ECH2O stations with textured soil of sandy clay. 

The stations with sandy clay loam soils however had volumetric water content of 0.11m
3
/m

3
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with an exception of olimisigioi site where the water content was 0.14m
3
/m

3
and the 

surrounding environment dominated by grassland mixed with sparse shrubs. The figure 4.19 

further means that soil layers from the top surface to the bottom, the 50 moisture probes (10) 

5TM-ECH2O sites) at five depths between 0-5, 5-10, 15-20, 35-40 and 75-80cm were 

inserted horizontally in line with the indicated segments. The averaged volumetric water 

content showed no significant difference since they mainly ranged between 0.10m
3
m

-3
and 

0.12m
3
m

-3
. The soil texture present in the moisture stations are mainly dominated by sandy 

clay loam (SCL) where it occupies 70% and the rest 30% sandy clay (SC) soils distributed 

homogeneously across the rangeland ecosystem and within the top soil layers.  

The standard mean deviation of the available water to plants was 0.011m
3
m

-3
 and its 

standard error was ± 0.003. Vereecken et al. (2007) found that the standard deviation of soil 

moisture peaked between 0.17cm
3
cm

-3
 and 0.23cm

3
cm

-3
 for most textural classes in a study 

with unprecedented spatial and temporal resolution across scales such Agricultural and 

irrigation management practices, particularly in semiarid and arid regions. Climate and soil 

hydraulic characteristics interacted to determine the degree of soil moisture variation. The 

average moisture content at which the greatest variability relies on, are the hydraulic qualities 

of the soil and the vegetation in each environment. The storage capacity of soil moisture in 

the plant root zone highly depends on the amount of soil textural classes, rainwater, fractional 

amount that infiltrates, percolates into the soil and partly that goes as runoff. 
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Table: 4.22: Characteristics of Soil moisture retention with depth across Maasai Mara rangeland ecosystem, 2019 

Moisture sites Sensor ID Soil depth 

(cm) 

pF Average 

VWC(m
3
/m

3
) 

Average FC 

@ 

- 0.3 bars 

Average WP 

@ - 15  bars 

Textural 

Class 

Across rangeland P1  0- 5 0.69 0.10 0.190 0.090 SCL 

Across rangeland P2 5-10     1.00 0.11 0.239 0.152 SCL 

Across rangeland P3 15-20 1.30 0.12 0.286 0.195       SC 

Across rangeland P4 35-40 1.60 0.12 0.279 0.190 SCL 

Across rangeland P5 75-80     1.90 0.12 0.280 0.190 SCL 

 

4.4.1 Soil Moisture Retention Curves from Soil Profile Data 

The moisture retention curves were computed for layers within soil moisture sites in which the database for available soil moisture at field 

capacity and wilting points were categorised as in Table 4.22. The results were summarised and the curves for the fine, medium and coarse 

texture classes were well separated in terms of absolute moisture contents at given potentials, but the shapes are slightly comparable. The 

pressure heads for the layers in each moisture potential 5, 10, 20, 40 and 80cm were calculated for the PF (Log h) and the values were as follows 

0.69, 1.00, 1.30, 1.60 and 1.90 plotted for the water content available at each layer and averaged for the spatially distributed sites. The 

characteristics depict homogeneous soil texture and water storage for most parts of the catchment. The dominant soil type for the area is mainly 

sandy clay loam followed by sandy clay, which makes it suitable for grassland environment. As observed from most parts of the sites, the field 

capacity at soil water content at -3 bars ranges from 0.19m
3
H2O/m

3
soil to 0.29m

3
H2O/m

3
soil with a mean field capacity (FC) of 

0.24m
3
H2O/m

3
soil for all parts of the rangeland. The permanent wilting point (PWP) at soil water content at -33 bars ranges from 

0.10m
3
H2O/m

3
soil to 0.12m

3
H2O/m

3
soil at average of 0.11m

3
water/m

3
soil for most parts of the grassland. 
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The available water for most parts of the sites in which biomass were collected were 

0.13m
3
H2O/m

3
soil on areas with sandy clay soil and 0.11m

3
H2O/m

3
soil for those areas 

dominated by sandy clay loam, which indicates that sandy clay soils retains more water than 

sandy clay loam (SCL). The total organic matter in the soil as determined shows that the top 

layer of soil within a depth of 5cm has higher total organic carbon than deeper soils. This 

makes the soil creates a high water retention capability than the soils with less total organic 

matter. The potential of retention is a result of high carbon content that creates high porosity 

for holding water in the soil. Figure 4.20 shows the matric potential for soil varying in depths 

and that water loss appears to be slightly high due to the influence of infiltration rate. It 

shows that in the first few days after precipitation that moisture also depletes faster at the 

exposed top soil surface due to evapotranspiration process occurring at -0.3 bars and -15 bars 

(0 to 1500kPa) volumetric field capacity. On the initial top soil layer, it is worth noting that 

between 0cm (soil surface) and 10cm depth, there was rapid water loss due to gravity of 

0.01m
3
m

-3
. Notably, below the depth of 10cm, there were no water loss and the moisture 

content nearly remained almost constant at 0.12m
3
m

-3
 across the entire rangeland. 

 

                                                        (a = 5cm) depth 
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                                                           (b = 10cm) depth 

Figure 4.20: Characteristics of soil water potential for (a) 5cm and (b) 10cm depth at Maasai 

Mara rangeland 

According to the average curve, the volumetric moisture contents at pF 4.2, 2.5, 2 and 0 

are approximately 47, 33, 28, 19 and 19 v%, respectively. Statistics show that 42, 31, 21, and 

15 y% are the averages of the respective measured values. This could represent optimum 

amount of water for plants utilization or absorption. In subsoil depths, slight variation was 

observed due to the influence of gravity and evaporation on the soil surface. In the subsoil 

depths, water retention was lower in the surface soil as compared to the subsurface since the 

soil moisture trends ranged between 0.11m
3
m

-3
 and 0.12m

3
m

-3
 respectively. Below 80cm soil 

layer without rains for a couple of days, there was high probability of soil water loss 

approaching wilting point that caused gradual dryness of grass cover in MMNR rangeland. 

This phenomenon occurred during the period of dryness had no further significance to 

vegetation growth and the blossom nature of the vegetation growth and restoration during the 

wet season produced suitable dry matter quality for herbivores in the entire rangeland. In the 

study, evapotranspiration due to the influence of temperature at a given location was highly 

variable from year to year and season-to-season thus largely had greater influence on biomass 

yield stability.  

4.4.2 Statistical Analysis  

The effect of soil moisture variability on soil physical characteristics was compared using 

analysis of variance (ANOVA) for a randomized complete block design (RCBD) with ten 

(10) 5TM-ECH20 sensors site treatments and five (5) depth replications. Least-squares-
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difference (LSD) was used to distinguish significantly different means at the 5% probability 

level (P≤0.05).The analysis of MMNR rangeland ecosystem soil shown that, there was no 

significant difference in mean bulk density, particle density, and textural classes across sites 

with depths to soil moisture variation. Total organic carbon had no significant effect on soil 

moisture storage near the soil surface since the concentration of TOC was high near the soil 

surface and decreased gradually down the soil layers. Soil moisture storage was generally 

expressed as volumetric water content per unit area measured to a specific depth. This 

resulted in significant differences of soil moisture within depth increments where the 

variation in moisture was low near the soil surface and high below the surface. 

4.5 Simulate the Influence of Soil Moisture Variability in Biomass Production Using 

Coupled Hydrus-1D and Agricultural Production Systems Simulator (APSIM) Model. 

The water content simulated by Hydrus-1D on vertical profiles shown the moisture 

potential for vegetation growth in MMNR rangeland ecosystem. Similarly, crop simulation 

APSIM model was also used in the prediction of biomass production. Using similar input 

variables of soil properties, weather and vegetation, the output from the integrated models 

were displayed from graphic user interface as shown in subsequent tables and figures. The 

data measured for wheat biomass and crop yields were obtained from the farms of previously 

harvested biomass and yields (Appendix B.17 and B.18) where hay and wheat production is 

practiced (Figure 4.42, 4.45 and Appendix B.16). In the simulation of APSIM crop model, 

the dataset collected in MMNR rangeland were used for calibration while for Naivasha 

cropland was used as independent dataset for validation however, the MMNR climate data 

was partitioned for use in calibration and validation. The observed time series clipped AGB 

from various quadrates in dry and wet season was correlated with remotely sensed NDVI to 

explain the behaviour of soil moisture variability in rangeland and cropland ecosystem. 
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4.5.1 Simulation Results of Hydrus - 1D 

 

(a)(b) 

Figure 4.21: Variation of (a) matric potential and (b) volumetric water content with depths 

Figure 4.21 shows how the Hydrus package makes use of pedo-transfer functions (PTFs) powered by neural networks to forecast van 

Genuchten's water retention parameters and the saturated hydraulic conductivity (Ks) from textural data. A field's capacity and the permanent 

wilting point are defined by the bulk density and soil water content at a pressure head (h) of -300 and -15,000 cm, respectively. In this case, the 

values were significantly underestimated by the Hydrus 1D package's pedo-transfer function. Consequently, the hydraulic conductivity and 

pressure head gradient at the soil surface are used to compute the amount of water penetrating over the soil surface (using Darcy-law), 

Buckingham's while any excess water is immediately eliminated as overland flows or surface runoff. 



127 

 

                       (a)                                                                                               (b) 

Figure 4.22: Variations of (a) flow and (b) hydraulic conductivity with depth in different periods 
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(a)                                                                                        (b) 

Figure 4.23: Variation of (a) surface layer input flow and (b) water fluxes in different periods 

4.5.2 Hydrus-1D Model Calibration 

Hydrus-1D was validated through hydraulic parameter optimization in response to a comparison of modelled and measured soil water 

content. We then performed a sensitivity analysis on the Mualem-van Genuchten model's hydraulic parameters. Simulated soil water contents 

were determined using Hydrus-1D, with a SWC percent of 2.1% on average (Table 4.26). Because of the small soil volume, the one-dimensional 

Hydrus-1 D model could accurately characterise the primary SPAC fluxes. Important parameters for characterizing the soil/plant water balance 

were the water content at saturation, the fitting parameters and n, and the slope of the fitting line. In the calibration of Hydrus-1D, five sets of 

hydraulic parameters, r , s , sK
,
 , and n  on depths (P1 to P5) were thought of, and these results were attained by using the Rosetta model's 

pedo-transfer function. Parameters, such as surface depth P1 (0-5cm), and bottom depth P5 (75-80cm), were estimated using independent 
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variables such the percentages of sand, clay, and silt in the five soil layers (i.e., 0-5cm, 5-

10cm, 15-20cm, 35-40cm, and 75-80 cm) that were taken into account. Soil bulk density was 

also considered as an independent variable, along with the soil water content determined at 

soil water potentials of -300 cm and -15,000 cm. The lower bound and upper bounds of 

parameters,
r , s  and n  of the van Genuchten Model are set and presented in Table 4.23. 

Further, the program has since been applied to estimate parameters of the van Genuchten 

model simulating the soil water retention capacity. 

Table 4.23: Lower and upper bound of four van Genuchten model parameters 

Parameter r  
s    n  

Lower bound 0 0 0 1 

Upper bound 1 1 100 100 

 

In van Genuchten Model Parameter estimate, efficiency was determined using RETC 

program, here, the population size was selected as 20, and maximum number of iteration set 

was 20,000. In the study, final condition was done with the current iteration until it reached 

the maximum iteration. Different data sizes were used to set parameters for the corresponding 

individual soil sample. The parameters estimated via RETC program based on van Genutchen 

model was used to fit the measured data well and provided minimum and high values of 

upper and lower threshold (table 4.23). 

From the observation shown in table 4.24 of most soil layers, soil texture ranged from 

sandy clay loam to sandy clay and again sandy clay loam with increased soil depth. Based on 

site results, sandy clay loam (SCL) had water content that varied from 0.18 to 0.19 (m
3
/m

3
) at 

-33 kPa and 0.06 (m
3
/m

3
) at -1500 kPa. However, in sandy clay textured soils, water content 

drastically increased from 0.18 to 0.28 (m
3
/m

3
) at -33 kPa and 0.07 to 0.13(m

3
/m

3
) at -1500 

kPa. The saturated hydraulic conductivity indicated a value of 106cmd
-1

 (4.42cm/hr) for 

sandy clay loam textured soils and in sandy clay textured soils, it measured 31.44cmd
-

1
(1.31cm/hr). In a different study conducted by a similar evaluation of water flow and 

infiltration using the HYDRUS model in a sprinkler irrigation system, Honar et al. (2011) 

found similar results, with sand accounting for 22%, silt for 43%, and clay for 35% of the 

total dissociation. The soil was only one meter deep and consisted of a single layer. We 

started with 15% soil moisture, used 6.6mm/hour of sprinkler intensity, and irrigated for 12 

hours.
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Table 4.24: Estimated van Genuchten physical and empirical parameters based on soil 

constituent particles 

Sensor 

Port 

Id 

Soil 

Layer 

(cm) 

Soil Texture )( 33 cmcmr

 

)( 33 cmcms

 

)( 1cm  
n  )( 1dcmK s

 

P1 0-5 Sandy Clay Loam 0.065 0.41 0.075 1.89 106.1 

P2 5-10 Sandy Clay Loam 0.065 0.41 0.075 1.89 106.1 

P3 15-20 Sandy Clay 0.100 0.39 0.059 1.48 31.44 

P4 35-40 Sandy Clay Loam 0.065 0.41 0.075 1.89 106.1 

P5 75-80 Sandy Clay Loam 0.065 0.41 0.075 1.89 106.1 

 

From table 4.24, it can be noted that at 40m and 80m depth profiles, Kissinger station had 

soils mainly sandy clay and at 1540 m elevations here, two-soil sample layers were made of 

sandy clay and rest three profiles were sand clay loam. Observations show that there was no 

significant difference in textural classes since most of the sites soils had homogeneous 

characteristics with different depth profiles as determined from excavated various pit 

samples. 

Table 4.25: Measured and simulated soil water content using Hydrus 1D across Maasai Mara 

National Reserve Rangeland Ecosystem 

Depth ID Depth 

(cm) 

Bulk density 

(gcm
-3

) 

Measured 

SWC(m
3
m

-3
) 

Predicted 

SWC 

(m
3
m

-3
) 

Textural 

Class 

P1 0-5 1.40 0.214 0.222 SCL 

P2 5-10 1.45 0.257 0.261 SCL 

P3 15-20 1.34 0.291 0.298 SC 

P4 35-40 1.19 0.316 0.323 SCL 

P5 75-80 1.22 0.344 0.347 SCL 

Mean  1.32 0.284 0.290  

Observed SWC – Variance, V = 0.026, Standard deviation, SD = 0.0507 and Standard Error, 

SE = 0.0227 and Predicted SWC – V = 0.025, SD = 0.0497 and SE = ±0.0222 

Table 4.25 indicates the difference between the measured data and the estimated data soil 

water with depths of 10, 5TM-ECH20 soil moisture, temperature, and soil textural classes 

across the rangeland ecosystem. From the table, we can see that the data are different in type, 
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bulk density, depth location and the number of data points, which indicates that the observed 

water content had variance of 0.026; SD of 0.0507 and SE of ±0.0227 and the estimated 

water content had variance of 0.025, SD of 0.0497 and SE of ±0.0222 respectively. 

 

Figure 4.24: Soil moisture characteristic curve 

Figure 4.24 depicts a scenario where the shape of the soil water retention curve controls 

the linear relationship between the mean soil moisture and its standard deviation. 

Heterogeneity in soil characteristics may explain for over 80% of the observed standard 

variation of water contents, as demonstrated by the comparison of simulated and observed 

soil moistures within a (0-10) cm thick topsoil layer. 

Table 4.26 and 4.27 shows the statistical performance of three soil water content 

determination approaches and through their mean comparisons, gravimetric water content 

gave significantly higher performance with NSE of 0.998, r = 0.000, RMSE = 0.0035m
3
m

-3
 

and R
2
 was 0.998. The 5TM-ECH20 approach gave fair prediction as compared to cosmic ray 

neutron sensor technique with NSE = 0.978, r =0.000, RMSE = 0.0332m
3
m

-3
 and R

2
 = 0.933 

in relation to the overall model performance prediction results of NSE = 0.918, r = 0.000, 

RMSE = 0.0159 m
3
m

-3
 and R

2
 = 0.923. 
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Table 4.26: Hydrus-1D statistical evaluation of measured and predicted/simulated modelled 

soil water/moisture content across the rangeland ecosystem 

Depth (cm) NSE R RMSE (m
3
m

-3
) R

2
 

0-5 0.987 0.000 0.010 0.987 

5-10 0.992 0.000 0.006 0.992 

15-20 0.867 0.000 0.009 0.867 

35-40 0.953 0.000 0.007 0.953 

75-80 0.993 0.000 0.004 0.993 

 

Table 4.27: Statistical indicators comparing performance of three approaches applied to 

describe the measured soil water content across the rangeland ecosystem 

Method/Technique NSE r RMSE(m
3
m

-3
) R

2
 

Gravimetric  0.998 0.000 0.0035 0.998 

5TM-ECH20 probes 0.978 0.000 0.0332 0.993 

Cosmic Ray Neutron Sensor  0.779 0.000 0.0111 0.779 

Overall Performance 0.918 0.000 0.0159 0.923 

During both the calibration and validation years, the CRNS method yielded the most 

accurate predictions of root zone soil moisture at the field scale (RMSE = 0.0035 m
3
m

-3
), 

followed by the exponential filter (RMSE = 0.0035 and 0.0159 m
3
m

-3
 for the calibration and 

validation years, respectively). The estimated data using the BEST approach yielded good 

modelling results (RMSE = 0.023 and 0.022, and R
2
 = 0.72 and 0.81), and the optimized 

results (RMSE = 0.012 and 0.020, and R
2
 = 0.83 and 0.72) were also well predicted. A 

second experiment was conducted by McGraw et al. (2015) to assess the efficacy of the 

CRNS approach for small watersheds in two semiarid ecosystems in the south-western 

United States. The watersheds were outfitted with a distributed sensor network comprised of 

soil moisture sensors. Over the course of the 19-month investigation, the authors observed 

that the CRNS approach and the distributed sensor network generated RMSE values of 0.009 

and 0.013m
3
 m-

3
 in a mesquite savannah in the Santa Rita Experimental and a mixed shrub 

land in the Jornada Experimental Range, respectively. This was primarily due to the inclusion 

of 5cm depth sensor observations of shallow soil moisture. As indicated, the results slightly 

differed with this study where the RMSE ranged between 0.0035 and 0.0332 m
3
m

-3
 observed 

from gravimetric CRNS and distributed 5TM-ECH2O sensor network conducted at semi-arid 

MMNR rangeland ecosystem. Vather et al. (2018) conducted research on CRP installation 



133 

and adjustment in Cathedral Peak Catchment VI, South Africa. CRP soil moisture estimates were checked against an in-situ soil moisture 

network made up of time-domain reflectometry and Echo probes. It was discovered that once the CRP was calibrated, it could offer spatial 

estimates of soil moisture that were highly correlated with the in-situ soil moisture network data set, with an R
2
 value of 0.845. 

4.5.3 Sensitivity Analysis 

The study's parameterization approaches were evaluated for their ability to replicate soil water fluxes, and then a sensitivity analysis was 

performed to determine which hydraulic parameters were most sensitive in describing the soil water balance. This was done to cause 

perturbation on each of the five parameters namely residual water content, 
r  (m

3
m

-3
), saturated water content, s  (m

3
m

-3
), saturated hydraulic 

conductivity, sK (cmd
-1

) alpha,   and n (cm
-1

) (fitting parameters) by increasing the corresponding values used in bottom layer P5 (75-80cm) by 

+ 10% and running Hydrus-1D simulations again. 

 

(a)                                                                                                                          (b) 

Figure 4.25: Variation of (a) Pressure heads in different periods (b) relation between volumetric water content and matrix potential
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Figure 4.25 shows the soil pressure head (h) and soil water content (SWC) trends at varied 

depths (0 and 100 cm) in different periods. The perturbed increase of hydraulic parameters 

had a significant impact in the computation of the SWC both in the superficial (0-5cm) layer 

and in the deep layer (75-80cm). It was seen that s and n  were the most sensitive 

parameters for the shallowest layer and their +10% perturbation resulted in SWC variations 

that reached up to 40 and -25%, respectively. High impact on pressure head (h) occurred 

during dry season when there was short and low rainfall that caused strong reduction of 

SWC, especially in the 0-20 cm layer. The perturbation of input parameters 
r and sK  had no 

significant effects while that of s  and n  resulted in an increment of 30% while that of   in 

a reduction of 10%. 
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4.6 Measured Aboveground Standing Grass Biomass at Maasai Mara Rangeland Ecosystem 

Table 4.28: Observed aboveground standing Biomass, Meta Plains – Main Mara, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

Latitudes                             Longitudes 

Quadrat Area 

size (m) 

Area in 

m
2
 

Wet 

wgt 

(Kg) 

Dry 

wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A - 1.93320 
 

35.149133 2.5m x 2.5m 6.25 2.828 

 

2.150 

 

3.440 0.344 

B      -1.493388 35.149170 2.5m x 2.5m 6.25 2.500 

 

2.000 3.200 0.320 

C -1.493428 35.149188 2.5m x 2.5m 6.25 2.800 

 

2.215 

 

3.544 0.354 

D -1.493398 35.143170 2.5m x 2.5m 6.25 1.950 

 

1.500 

 

2.400 0.240 

E -1.493317 35.149268 2.5m x 2.5m 6.25 3.100 

 

2.450 

 

3.920 0.392 

F -1.493400 35.149240 2.5m x 2.5m 6.25 2.800 

 

2.000 3.200 0.320 

Average     2.663 2.053 3.284 0.328 
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From table 4.28 and 4.29, it can be seen that during the dry season in 2017, the observed aboveground biomass (AGB) at this site measured 

an average dry biomass weight of 0.328 kg/m
2 

or 3.28 tons/hac (Table 4.29) and this were from six replicated quadrats that had slight variations 

in their measurements. The non-standing biomass during clipping is also taken as part of the quadrat sample for which losses is accounted for in 

weighing of the biomass. The aboveground biomass from a similar site on a wet season of 2017 also varied slightly with an average weight on 

dry matter basis was 1.634 kg/m
2
 or 10.208 tons clipped from 2.5m by 2.5m quadrat. The standard deviation was 0.0508 kg/m

2
 while the 

standard error of the mean was ±0.0376. The following year in 2018, there was heavy rainfall, which fell almost throughout the year, and the 

above ground biomass harvested were dried and measured from each quadrat and the results were high as compared to 2017. 

Table 4.29: Observed aboveground standing biomass, Mara – Meta Plains – Main Mara, 05/05/2018_Wet season 

Sample 

  ID 

Coordinates 

 

    Latitudes                         Longitudes 

Quadrat Area 

size (m) 

Area in 

m
2
 

Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass 

in Kg/m
2
 

A -1.493320 
 

35.149133 2.5m x 2.5m 6.25 11.575 5.910 9.456 1.513 

B      -1.493388 35.149170 2.5m x 2.5m 6.25 11.125 7.015 11.224 1.796 

C     -1.493428 35.149188 2.5m x 2.5m 6.25 9.200 5.455 8.728 1.397 

D       -1.493398 35.143170 2.5m x 2.5m 6.25 11.550 6.187 9.899 1.584 

E     -1.493317 35.149268 2.5m x 2.5m 6.25 10.350 6.489 10.382 1.661 

F     -1.493400 35.149240 2.5m x 2.5m 6.25 13.100 7.225 11.560 1.850 

Average     11.150 6.380 10.208 1.634 
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Figure 4.26: Box plot of selected trend of Mara main aboveground biomass per quadrat 

during dry and wet season 

Figure 4.26 indicates that during the wet periods, green grass biomass was high as 

compared to dry season. There was better biomass coverage on the upper catchment area 

such as Mara main station, Olimisiogioi, Upstream and Helicopter and most of them were 

homogeneously distributed with green biomass cover across the rangeland with scarce 

scenery of mixed shrubs and tall trees along the river channels and streams passing across the 

rangeland. On lowlands  toward Mara Bridge with low altitude (1520m), there was less 

vegetation/grass coverage in the western and southern periphery of the catchment while, 

better grass vegetation coverage was  observed in the northern part of MMNR ecosystem 

sites. The digital scale weighed dry matter biomass was the final mass of both standing and 

non-standing AGB was taken to represent the weight within each quadrat sampled. 
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Table 4.30: Comparison of distributed above ground standing biomass in Maasai Mara catchment sites during dry and wet season 

Location Coordinates 

 

 

 Latitudes                        Longitudes 

Quadrat 

Area in m
2
 

Average Dry 

season wgt (Kg) 

Average 

Wet wgt 

(Kg) 

Dry Season 

Biomass in 

Kg/m
2
 

Wet Season 

Biomass in 

Kg/m
2
 

Mara Main -1.49332 
 

35.14918 0.255 2.053 2.663 0.328 0.654 

Kissinger    -1.55889 35.23664 0.147 0.092 0.190 0.366 0.589 

Ashnil  -1.45291 35.07215 0.109 0.093 0.198 0.371 0.437 

Helicopter -1.53042 35.17422 0.103 0.097     0.172 0.389 0.413 

Talek -1.46117 35.18276 0.103 0.089 0.148 0.357 0.412 

NiceBridge -1.49519 35.19034 0.104 0.092     0.185 0.360 0.414 

V-section -1.46249 35.10616 0.103 0.089 0.182 0.355 0.411 

Upstream -1.52919 35.23824 0.106 0.089      0.148 0.354 0.423 

Olimisiogioi -1.50384 35.12008 0.099 0.090      0.148 0.365 0.397 

Mara Bridge -1.53833 35.03615 0.077 0.066      0.143 0.264 0.308 

 Total AGB 35.094  2.850       4.177 3.509 4.458 

During the dry season, low vegetation coverage class was in 2017 experienced because of low and short rainy seasons. Land generally 

occupied by MMNR rangeland ecosystem covers 1,534km
2 

and the area covered as grassland were estimated to be 717.203km
2
 (46.75%) as 

indicated in (Table 4.39). The total above ground biomass (AGB) for the entire rangeland ecosystem during the dry season was 35.094 tonha
-1

 

that converts to seasonal quantify of 2,516,952.208 tonnes and during the wet seasonal AGB was 42.123 tonha
-1

, which translates into 

3,021,074.197 tonnes biomass. 
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 This conversion was based on the whole of Maasai Mara National Reserve as a rangeland 

ecosystem when vegetation cover density was at its maximum productivity, however the 

quantity may not be precise because of wildlife feeding such as the largest wildebeest 

population when aboveground grass biomass was being sampled. From the seasonal 

quantitative analysis of vegetation coverage in both seasons shown in table 4.39, there was 

79.92% high vegetation coverage class in the year 2018 wet season characterized with yearly 

high vegetation cover classes from high to low between 2018 (79.92%) and 2017 (20.07%) 

consecutively. 

Kariuki et al. (2018) found similar discoveries, noting that the home density, distance to 

road, grass biomass, livestock density, and wildlife density all follow normal distributions 

with means and standard deviations in the Amboseli and Mara habitats. In addition, the 

model's results show that the density of wildlife is higher in rainy years than in dry years, and 

that the density of wildlife is lower in private land tenure than in communal and government 

property. 

4.6.1 Observed and Simulated Output Results Obtained from APSIM Model 

The results for the measured Above Ground Biomass (AGB) from the (10) 5TM-ECH2O 

stations in MMNR rangeland  ecosystem were tabulated in tables (4.31and 4.32) for both dry 

and wet season and their respective model performance in table 4.33 and 4.34 which indicates 

that the model performed reasonably well in this ecosystem simulations.Tables 4.31 and 4.32 

indicates the rangeland sites quadrat aboveground biomass and water demand utilized in each 

growing location during dry and wet season. Despite the uniformity in quadrat area of 

0.25m
2
, the clipped biomass varied from one site to the other. This is due to the influence of 

environmental factors attributed to variation in climate, soil and the surrounding vegetation. 

The water demand for each dry matter generated during the bi-seasons (dry and wet) 

indicates higher water use in wet than in dry season signifying that when plants are water 

stressed, less biomass and subsequent yield production occurs. Most of this rangeland is 

dominated by standing grass of various species but they adapted well to the ecosystem natural 

conditions. From the tables, it can be noted that the aboveground biomass in dry season had a 

mean of 350.9 g/m
2
, which was slightly lower than that of wet season, which had a mean 

value of 445.9g/m
2
 which when converted becomes 3.51 and 4.46 tonha

-1
 respectively. 
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Table 4.31: Measured and simulated aboveground standing grass dry matter (biomass) during dry season 

Location Id Quadrat 

Area in m
2
 

Observed Above 

Ground Standing 

Biomass(g/m
2
) 

Simulated 

Aboveground 

Standing Biomass 

(g/m
2
) 

Observed Above 

Ground Standing 

Biomass(tonha
-1

) 

Simulated 

Aboveground 

Standing Biomass 

(tonha
-1

) 

Water 

Demand 

(mm) 

Mara Main 0.25 328 332 3.28 3.32 4.444 

Kissinger 0.25 366 362 3.66 3.62 4.596 

Ashnil  0.25 371 367 3.71 3.67 4.464 

Helicopter 0.25 389 383 3.89 3.83 4.808 

Talek 0.25 357 355 3.57 3.55 4.668 

Nice Bridge 0.25 360 363 3.60 3.63 4.705 

V-section 0.25 355 349 3.55 3.49 4.583 

Upstream 0.25 354 348 3.54 3.48 4.481 

Olimisiogioi 0.25 365 361 3.65 3.61 4.584 

Mara Bridge 0.25 264 258 2.64 2.58 3.981 

Mean  350.9 347.8 3.51 3.48 4.531 
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Table 4.32: Measured and simulated aboveground standing grass dry matter (biomass) during wet season at Maasai Mara rangeland ecosystem. 

Location Id 

 

Quadrat Area 

in m
2

 

Observed Above Ground 

Standing Biomass (g/m
2

) 

Simulated Aboveground 

Standing Biomass (g/m
2

) 

Observed Above Ground 

Standing Biomass (tonha
-1

) 

Simulated Aboveground 

Standing Biomass (tonha
-1

) 

Water   

Demand (mm) 

Mara Main 0.25 654 678 6.54 6.78 6.594 

Kissinger 0.25 589 575 5.89 5.75 6.712 

Ashnil  0.25 437 425 4.37 4.25 5.656 

Helicopter 0.25 413 413 4.13 4.13 5.798 

Talek 0.25 412 413 4.12 4.13 5.815 

Nice Bridge 0.25 414 415 4.14 4.15 5.583 

V-section 0.25 411 415 4.11 4.15 5.532 

Upstream 0.25 423 428 4.23 4.28 5.556 

Olimisiogioi 0.25 397 392 3.97 3.92 5.530 

Mara 

Bridge 

0.25 308 302 3.08 3.02 4.981 

Mean  445.9 445.5 4.458 4.456 5.776 
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Figure 4.27: Observed and Simulated aboveground grass biomass in dry season 

 

Figure 4.28: Simulated and observed aboveground grass standing biomass wet season 

The figures 4.27 and 4.28 shows the model simulated well the aboveground biomass 

indicating the close relationship between the observed and the predicted biomass. The model 

underestimated the AGB for the dry season while slightly overestimated for the wet season 

and the results for the coefficient of correlation was R
2
 = 0.9882 and R

2
 = 0.9914 respectively 

signifying that the measured and the simulated grass aboveground biomass was closely 

determined to be nearly similar in their production in every season. 
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Figure 4.29: Observed and simulated aboveground standing aboveground grass biomass for    

respective soil moisture sites 

Figure 4.29 indicates the observed and predicted standing aboveground grass biomass 

from various 5TM-ECH2O sites and from the results shown in the boxplot, Helicopter had the 

highest production from the averaged replicated quadrats followed by olimisiogioi, which 

also produced much AGB than the rest of the sites. This depicts that there is a slight 

difference across the rangeland ecosystem and most sites such as Talek, Nice Bridge, V-

section and Kissinger and Ashnil have homogeneous aboveground biomass production. 

4.6.2 Statistical Evaluation of Model Performance 

In this study, linear regression analysis was applied to compare paired data-points for 

observed and simulated aboveground standing biomass for grass in MMNR rangeland 

ecosystem. Model performance of the used models were also evaluated using Nash Sutcliffe 

Efficiency (NSE), Pearson product moment correlation coefficient (r), and the root mean 

square error (RMSE) as indicated in equations (3.52, 3.53 and 3.54) respectively. The slope, 

intercept, and coefficient of determination/correlation (R
2
) of the linear regression between 

simulated and observed values were also determined as shown in equation (3.56). Among the 

indices, the R
2
 and the RMSE are preferred here for model comparison. Ma et al. (2011) 

stated that for a “point” agricultural model like APSIM to be calibrated adequately the R
2
 and 

the RMSE should be above 0.8 and <10% (0.1), respectively. The above rating scale was 

applied in this study. 
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Table 4.33: Overall APSIM model performance of observed and simulated aboveground 

standing grass biomass in MMNR rangeland ecosystem during dry season 

Location ID NSE r RMSE (gm
-2

) R
2
 

Mara Main 0.963 0.000 0.089 0.963 

Kissinger 0.901 0.000 0.084 0.901 

Ashnil 0.944 0.000 0.059 0.944 

Helicopter 0.900 0.000 0.067 0.900 

Talek 0.958 0.000 0.064 0.958 

Nice Bridge 0.917 0.000 0.032 0.917 

V-section 0.925 0.000 0.062 0.925 

Upstream 0.927 0.000 0.077 0.927 

Olimisiogioi 0.860 0.000 0.061 0.860 

Mara Bridge 0.927 0.000 0.077 0.927 

Overall 

Performance 

0.979 0.000 0.047 0.979 

 

Table 4.34: Overall APSIM Model performance of observed and simulated aboveground 

standing grass biomass in MMNR rangeland ecosystem during wet season 

Location ID NSE r RMSE (gm
-2

) R
2
 

Mara Main 0.934 0.000 0.251 0.934 

Kissinger 0.938 0.000 0.295 0.938 

Ashnil 0.970 0.000 0.181 0.970 

Helicopter 0.906 0.000 0.042 0.906 

Talek 0.859 0.000 0.047 0.859 

Nice Bridge 0.907 0.000 0.021 0.907 

V-section 0.812 0.000 0.059 0.812 

Upstream 0.942 0.000 0.049 0.942 

Olimisiogioi 0.840 0.000 0.061 0.840 

Mara Bridge 0.970 0.000 0.068 0.970 

Overall Performance 0.988 0.000 0.103 0.988 

 

The tables 4.33 and 4.34 shows that APSIM model simulated reasonably well the observed 

standing aboveground biomass of rangeland ecosystem. This follows that NSE was 0.988, r = 
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0.000, RMSE = 0.103ton/ha and R
2
 was 0.988. The NSE and R

2
 gave similar simulation 

results though the model overestimated. The study was contrary with an experiment 

conducted by Archontoulis et al. (2014) on evaluating APSIM maize, soil water, soil 

nitrogen, manure, and soil temperature modules in the Midwestern United States and found 

that biomass production for maize gave the RMSE = 0.77 Mgha
–1

 and grain yield RMSE = 

0.53 Mgha
–1

, however the model underestimated the results. The calibrated model was 

evaluated against end of season grain yield data which showed a very good performance of 

R
2
 = 0.87 and biomass production, R

2
 = 0.96. 

4.7 Naivasha Cropland Rainfall Characteristics 

 

Figure 4.30: Automatic Weather Station at Kijabe Farm Naivasha Cropland 

The Naivasha cropland ecosystems during the study period had the highest annual rainfall 

received in 2010 with 1154mm and the lowest was 635mm in 2014, which was followed by 

2016 with 773 mm. The area fell within the potential agro ecological zones of Kenya, which 

defines zones based on combinations of soil, landform and climatic characteristics and 

edaphic requirements of crops and on the management systems under which the crops are 

grown for production. The rainfall regimes for this cropland in the last decade has 

tremendously supported production of biomass such as pasture, fodder and food produce for 

both livestock and human consumption. The rainfall ranges for the last decade ranged 

between 600mm to 1200mm of annual rainfall with most falling between the months of 

March and June. The ecological zone to which this area falls is zone (IV) a semi-arid area due 

to its characteristics favourable to crop production. These are the periods when most of the 
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crops including non-crop plants grew since the soil moisture stored within the root zone could 

support plants growth. 

 

Figure 4.31: Trend of Monthly rainfall for Naivasha Cropland: 2010-2019 

Figure 4.31 indicates that the Naivasha rainfall regimes for hydrological years where most 

of the rainy periods onset begins between March to the end of June and thereafter the area 

received intermittent rains that felt between July to the end of December which shown similar 

characteristics throughout the rainfall time series from 2010 to 2019. The highest rainfall was 

experienced in the month of April 2013 with 460mm, which was followed slightly with lower 

rainfall in the months of May to December. 

4.7.1 Soil Information for Naivasha Cropland Ecosystem 

a) Delamere Manera estate farm 

The soil texture of this area is mainly sandy loam soils according to the soil analysed 

hydrometrically in 2018; the soil conditions had varied results. The soil PH (H2O) potential of 

hydrogen ions was 8.74 and alkalinity has had similar value for the last three years as 

previously analysed. The electrical conductivity EC (salts) measured in mS/cm were 

determined by potentiometric method which was found to be 541 and the concentration of 

phosphorous (Olsen) in parts per million were 20.7 and potassium 1160(7.22%), calcium 

5790(70.3%), magnesium 342(6.92%) their constituent‟s ratios and percentages, obtained 

using the colorimetric and spectroscopy methods respectively. The amount of soil organic 

matter present in the soil was 4.41% and total nitrogen was 0.22% determined by colorimetric 

technique. Other micronutrients of the chemical properties of the elements present were 

sulphur 99.8 ppm, sodium 1220 ppm, iron 91.5 ppm, manganese 216 ppm, boron 1.80 ppm, 
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copper 1.66ppm, zinc 6.45 ppm and the C.E.C in meq/100g was 41.2. The ratio of C/N ratio 

was 11.7, which indicated that the top soil of this area has very high pH, very low 

concentration of magnesium, very high sulphur, high sodium presence, high manganese, with 

very high C.E.C. The percentage concentration of these elements has very low percent of 

magnesium, high percent of sodium (ESP) and low percent of other bases including very low 

percent of hydrogen with very high calcium to magnesium (ca: mg) ratio in the soil. Due to 

high soil pH the elements calcium, magnesium, potassium, and sodium present in their 

respective concentrations were extracted using ammonium acetate (pH 8.0) solution. The 

soils are suitable for wheat, maize, and barley as cereals crop and for growing pastures such 

as Burma Rhodes, natural grass for human food consumption and livestock feeds. 

4.7.2 Soil Moisture Characteristics 

Figure 4.41 displays a time series of volumetric water content collected from field-

deployed, calibrated 5TM-ECH20 probes. Soil moisture responses were analyzed as a 

function of precipitation, and it was found that events with precipitation more than 15 mm 

elicited almost instantaneous reactions from all 10 sites. Maximum values of 0.33 and 0.37 

m
3
m

-3
 were recorded for soil water content increase at Kijabe/Ndabibi and Delamere/Minera 

farm between May and July of 2018 and 2019, respectively. The soil moisture at 

Kijabe/Ndabibi and Delamere/Manera farms had a significant spike at the end of May 2018, 

likely impacted by the 261.5mm of rainfall received between March and April. However, the 

soil moisture remained relatively steady until the conclusion of the rainy period in July. 

During 2018's rainfall events, soil moisture variability was larger than in 2017's, with several 

sudden increases and decreases in soil water content. These spatial and temporal variations in 

soil moisture were most likely linked to the varying behaviour of precipitation in the three 

years under study (2017, 2018, and 2019). (Figure 4.31). Whereas in 2018, the rainy season 

began earlier in March and lasted until July, wet season was also observed in August and 

September. The highest rainfall was received in Naivasha cropland on April 2013 with 

460mm and similarly on 298.5mm in May 2018, which eventually increase soil moisture 

levels that result in seasonal moisture variation. 
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4.7.3 Soil moisture variability in selected Naivasha cropland 

 

Figure 4.32: Soil moisture and temperature variation per depth profile for Kijabe/Ndabibi  

5TM- ECH20 site: 2017-2019 

The volumetric water content was low at 0-5cm depth due to the influence of 

evapotranspiration near the soil surface and vegetation use as compared to the soil layer at 

75-80cm depth since the water that infiltrated into the soil had no environmental influence. 

The water retained below the land surface was unexposed to changes of ground heat flux, 

which due to fluctuation of temperature may have had little influence on moisture below the 

surface. Root zone depletion of soil moisture may also have resulted from water percolation 

into the soil and utilization of moisture by vegetation/plants for their growth and development 

during transpiration process. The figure 4.32 indicates the variation of soil moisture in 

relation to temperature changes where during the month of April through December in 2018 

and 2019, the moisture gradually decreased through from April to December due to 

occurrence of subsiding rainfall during the season. Soil moisture storage and retention was 

high due to proper soil texture and structure, however high temperature between the land 

surface and the atmosphere occurred due to the trade-off between latent and sensible heat 

fluxes. As seen from Figure 4.33, the beginning of April to December 2018, the volumetric 

water content decreased gradually from the top layer to the bottom layer of the soil profile. 

This phenomenon occurred due to the influence of moisture changes caused by varying 

temperature, relative humidity, wind speed, wind strength, wind direction, water vapour 

fluxes including average carbon dioxide concentration of 330 ppm and this altered plants 

growth through photosynthetic processes hence low biomass and bloomy formation during 
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the season. From field observation, temperature has direct effect on soil moisture variability 

and therefore rise in temperature in a given period causes rapid surface loss of soil moisture. 

 

Figure 4.33: Soil moisture and temperature variation at Nunjoro farm site: 2018 

Figure 4.33 shows that soil moisture varies with influence of temperature change in every 

season. During the period, it was observed that on April through December 2018 had 

declining soil moisture due to subsiding rainfall and increased temperature. Most evaporation 

took place because of moderate temperatures and low rains that indicate variation of soil 

moisture from one season to the other, however the top soil layer below 10cm experience 

high moisture as compared to the top layer near the surface because of evaporation prompted 

by heat from the sun. Here, Kijabe/Ndabibi and Nunjoro farms depict similar characteristics 

due to closely homogeneous soil moisture, temperature, and rainfall events. Gerten et al. 

(2007) conducted a modelling study and found that changes in soil moisture can be quite 

variable from one region to the next, with a general trend of decreasing soil moisture with 

rising temperatures. However, this study shows that soil moisture correlates with rainfall 

event and its intensity in a certain period, when there is low temperature; soil surfaces slightly 

losses ground water to the atmosphere caused by exchange of heat fluxes. In such cases, the 

atmospheric and soil temperature consequently remains closely variable to soil moisture for 

diurnal use by vegetation in the formation of food through photosynthesis. Mellander et al. 

(2004) observed that a further decrease in soil moisture could occur because of the impact of 

rising temperatures on plant-level processes, although this may vary depending on the 

circumstances (Daly et al., 2004; Jones, 1992). However, in general, the amount of soil 

moisture increases when there is more precipitation due to climatic variability. 
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4.7.4 Wheat Biomass and Yield Production in Naivasha Cropland Ecosystem 

Wheat being a similar vegetation species as grass in Maasai Mara rangeland ecosystem 

was studied as cropland produce and in Naivasha. Here, Maiella location was seen to be the 

most suitable wheat growing area with soil, landform, climatic characteristics and edaphic 

requirements as compared to other croplands. The annual production in this region for wheat 

crop was 2,716.2 kg/ha (2.716 tons/ha) while the rest of the area Maai Mahiu and biashara 

produced 0kg/ha and 1kg/ha respectively. Cereal crops such as wheat, which are in the same 

category as grass and pastures produced highly in this climatic zone. Again, annual maize 

crop production in Maiella was 1,347kg/ha (1.347tons/ha) followed by Naivasha East with 

924.7kg/ha (0.925 tons/ha) and Viwandani produced 714.3kg/ha (0.7143tons/ha). As 

observed from annual production Maiella is the most productive zone for wheat crop in cereal 

production (Figure 4.34). 

 

Figure 4.34: General trend of annual wheat crop production in Naivasha cropland 

From figure 4.34, bales production of hay generated from wheat stovers have gradually 

been rising as compared to other pastures followed by wheat stovers throughout the years 

since 2013 to 2019. The demand of these pastures as feeds for livestock has made most 

subsistence and commercial farms practice the biomass production of hay and wheat stovers. 

The stovers concentration decreases due to moisture loss in the stalk cells and drying begins 

to a point where baling of stovers can be prepared as feeds for livestock. The wheat stovers 

however tend to harden from the release of moisture in stalks and become dry matter, which 

can be made into bales, stored as livestock feeds. Each harvesting was done when the crop 

was mature and under good quality, the amount of biomass ranged between 1260 and 1600 

kilograms per acre while the average weight of a standard biomass of hay was between 18 

and 20 kgs per bale. 
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Figure 4.35: Trend of pasture crop production between 2013 and 2019 in Naivasha cropland 

Figure 4.35 indicates that the corresponding wheat biomass quantity correlates with 

extractable water content for plants growth and development of biomass. Observation made 

is that during germination and emergency period little moisture was used in the germination 

of wheat seeds while from floral initiation stage there was progressive rainfall distribution 

through flowering, which requires optimal use of water to the end of grain fill and final 

harvest. This indicates that timely onset of rainfall matters greatly cropland as it influences 

the production of biomass. It can also be seen that wheat biomass production corresponds 

directly with extractable water content from flowering stage since it the point of grain 

formation and stover concentration increase in plant. The figure 4.36 shows that water is an 

important for effective growth of plants that is utilised in the development stage for bloom 

formation of quality stovers in wheat crop mainly used as bales for livestock feeds.  

 

Figure 4.36: Correlation of wheat crop per stage biomass to extractable water content 
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4.7.5 APSIM Simulation Results of Wheat Crop 

Table 4.35: APSIM simulation trend of wheat crop seasonal stages on aboveground biomass 

at Kijabe/Ndabibi Farm 

Days after 

Clipping 

Crop stage Stover N 

Conc (%) 

Leaf area 

Index (m
2

m
-2

) 

Extractable  

Water 

Content (mm) 

Simulated 

Aboveground 

Biomass (gm
-2

) 

Simulated 

Aboveground 

Biomass 

(tonsha
-1

) 

144 Germination 5.85 0.020 35.52 0.46 0.0046 

145 Emergence 5.82 0.024 32.07 0.70 0.0070 

175 Floral Initiation 3.15 1.310 288.59 94.07 0.9407 

201 Flowering 1.42 0.780 288.59 342.80 3.428 

208 Start of grain fill 1.23 0.329 272.77 369.00 3.690 

234 End of grain fill 0.54 0.177 262.72 431.59 4.316 

235 Maturity 1.23 0.00 260.65 431.59 4.316 

236 Clipping/Harvest 0.54 0.00 258.88 431.59 4.316 

 

Table 4.35 shows the physiological behaviour in crop stages of wheat crop based on the 

amount of extractable water content and biomass quantity produced at various stages during 

its growth. This indicates the number of days when biomass clipping normally begins for a 

wheat crop in the hay production and the quantity that can be obtained during each stage. 

This implies that, at the end of grain fill and maturity wheat clipping begins when biomass is 

at its maximum quantity of approximate amount of 431.59gm
-2

(4.316tonha
-1

), this 

corresponds to a drop in extractable water content ranging between 262.72 to 258.88 mm. 

During the period, crops do not use water as compared to more utilization of water during 

floral initialization and flowering stages when maximum water use is required. The 

maximum extractable water use was 288.59mm during floral period when bloomy biomass 

formation generally occurs. 
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Figure 4.37: Comparison between observed and simulated annual aboveground biomass for 

Naivasha cropland from 2017 to 2019 

Figure 4.37 shows the trend of observed and predicted biomass and grain yield at 

Kijabe/ndabibi, Delamere, Engineer/Mzee, and Nunjoro farms where for a period of three 

years (2017, 2018, and 2019). Annual yield production in Kijabe/Ndabibi and Delamere 

farms had the highest production in 2017 and 2019. In the previous year of 2017 had lower 

production and this may be attributed due to low rainfall hence low moisture storage level in 

the soil for plant growth. This indicates the variation of measured and predicted aboveground 

biomass (AGB) for wheat biomass, grain yield as cereals in Naivasha cropland. The wheat 

crop in the study was modelled since it felt under similar species to grass for livestock hay 

and human food production in cropland. The results show that the observed annual 

aboveground biomass of wheat is produced more in Delamere farm with close production to 

Kijabe/Ndabibi farm while at Engineer Paul‟s and Nunjoro producing less biomass. The 

production in 2019 for AGB was seen to have increased respectively probably owing to 

sufficient fall of rains during the season.  
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Figure 4.38: Comparison between observed and simulated annual wheat grain yield for 

Naivasha cropland from 2017 to 2019 

From the croplands in Naivasha Sub-county, it depicts that the production of observed 

wheat and simulated annual aboveground biomass has almost similar trend for the three 

consecutive years since 2017 to 2019. The red bars represent the annual measured and 

simulated AGB for the period 2018 of wheat production in Naivasha cropland. The highest 

wheat production has been Delamere/minera farm followed by Kijabe/ndabibi farms, which 

show that the environmental conditions were favourable in the two growing areas. 

 

 

 

 

 

 

 

 

 

 

Figure 4.39: Measured and simulated aboveground biomass of wheat crop 

Figure 4.39 shows the linear regression of model performance and this indicates that the 

correlation coefficient, R
2
 is 0.9997 has close relationship between the measured and 
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predicted biomass. The findings were consistent with those of Jianguo et al. (2020), who 

studied the applicability of the APSIM Wheat Model in the Yangtze River Plain of China's 

Hubei Province and found positive correlations between the model's predicted and observed 

values for the time it takes wheat to grow from seeding to flowering and full maturity. While 

the model's performance during the growth period simulation was superior, the findings 

showed that the model's performance in simulating wheat grain yield and aboveground 

biomass was also satisfactory. For both wheat grain yield and biomass, the R
2
 value was 

greater than 0.75.This suggests that APSIM perfectly predicted wheat production reasonably 

well.  

Table 4.36: Statistical model evaluation performance of observed and simulated 

aboveground biomass of wheat 

Depth (cm) R
2
 r NSE RMSE (Kg/ha) 

Kijabe/Ndabibi farm 0.998 1.000 0.998 0.857 

Delamere_Minera farm 0.997 1.000 0.997 0.075 

Engineer/Paul‟s farm 0.999 1.000 0.999 0.342 

Nunjoro farm 0.994 1.000 0.994 1.033 

Mean 0.997 1.000 0.997 0.577 

 

Table 4.37: Statistical model evaluation performance of observed and simulated grain yield 

of wheat 

Depth (cm) R
2
 r NSE RMSE (Kg/ha) 

Kijabe/Ndabibi farm 0.951 1.000 0.951 0.205 

Delamere_Minera farm 0.994 1.000 0.994 0.480 

Engineer/Paul‟s farm 0.974 1.000 0.974 0.787 

Nunjoro farm 0.937 0.215 0.937 1.107 

Mean 0.964 0.804 0.964 0.645 

 

From figure 4.39, 4.40 and table 4.36, 4.37, it can be deduced that APSIM model was able 

to accurately simulate the biomass and grain yield reasonably well in response to extractable 

water content as indicated from the graphs. The model performance on biomass was found to 

be good for Kijabe/Ndabibi farm as described by R
2
 = 0.998, r = 1.000, NSE = 0.951 and 

RMSE = 0.857 kg/ha. The performance for Delamere/Minera farm were R
2
 = 0.994, r 

=1.000, NSE = 0.994 and RMSE = 0.075 kg/ha and Engineer farm was R
2
 = 0.999, r =1.000, 
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NSE = 0.999 and RMSE = 0.342 kg/ha while Nunjoro farm was R
2
 = 0.994, r =1.000, NSE = 

0.994 and RMSE = 1.033 kg/ha. The mean biomass performance was substantially good with 

R
2
 = 0.997, r =1.000, NSE = 0.997 and RMSE = 0.577 kg/ha. The goodness of fit was also 

assessed for wheat yield by calculating the mean where R
2
 = 0.964, r = 0.804, NSE = 0.964 

and RMSE = 0.645 kg/ha with R
2
 and RMSE giving similar results. The results nearly 

concurred with those of Jianguo et al. carried out three wheat variety experiments in Wuhan, 

Jingmen, and Xiangyang, China and found that R
2
 values of 0.72 - 0.87 for the wheat 

aboveground biomass and 0.75 - 0.78 for the grain yield were observed. There were 

statistically significant positive correlations between the calculated and measured values of 

wheat grain yield and aboveground biomass. The author also found that the average 

discrepancies between predicted and measured wheat grain production and aboveground 

biomass were less than 556 and 1323 kg ha
-1

. 13.5%, 17.7%, and 19.8% were the NRMSE 

values for the simulated biomass and the observed data, respectively. So, in all three testing 

areas, the NRMSE values for wheat grain production and aboveground biomass were below 

20%. From this study, it can be seen that the difference between observed and simulated 

biomass and yield from different Naivasha croplands were between 2017 and 2019 were 

relatively small meaning that the observed production was close to those predicted by 

APSIM. During this period, the simulated biomass and yield were higher than the observed 

biomass and grain yield, which was a clear indication, that APSIM over predicted production. 

As observed the R
2
 and NSE have similar values because the original values were not 

significantly different.  

4.7.6 Model Sensitivity Analysis 

Simlab 1.1 analysis of soil input parameters revealed that soil water conductivity and soil 

organic carbon amount are the most sensitive parameters for explaining variability in each of 

the model outputs of interest. In addition to the input parameters, hydraulic variables like 

saturated water content (APSIM's SAT), water holding capacity at upper limit (APSIM's 

DUL), and wilting point at lower limit (APSIM's LL15) influenced the model's results. Grossi 

et al. (2015) conducted an experiment and found that in DSSAT simulations, sorghum yield 

was more sensitive to precipitation, sunlight, and CO2 concentrations. Consequently, canefw 

is most affected by the sun, rain, and temperature in computer simulations of agricultural 

systems. 

4.8 Normalized Difference Vegetation Index (NDVI) 

Spatial monthly values of NDVI were derived from MODIS and PROBA-V imagery for 

the entire rangeland within the period of study (2017-2019). Much focus was based on sites 
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installed with 5TM-ECH20 soil moisture, temperature stations and grass biomass clipping and 

measurements done within the periphery. The images displayed in Figure 4.40 and 4.44 are 

the sequential bi-seasonal images of (a) wet and (b) dry periods when site‟s aboveground 

biomass were clipped sampled, weighed and packed for oven drying in determination of dry 

matter content (biomass). It also indicates the range of NDVI values with transition in which 

vegetation greenness occurs for the period of 2017, 2018 and 2019. High NDVI value shows 

that there is high surface spectral reflectance due to greenness and high-density vegetation 

cover while low NDVI value indicates low or sparsely distributed vegetation cover with low 

density in greenness. The observed images shown that during the dry season, low vegetation 

greenness was realized and high vegetation greenness in wet season. 
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(a)                                                                                                                (b) 

Figure 4.40: Vegetation NDVI trend from PROBA-V satellite imagery data for Maasai Mara Rangeland wet (a) and dry (b) season acquired on 

(May and Dec 2017) 

Figure 4.41 indicates greenness within spatial segments in the month of May wet season with spectral reflectance ranged of between 0.263 

and 0.841. During the dry season the greenness of vegetation particularly grass aboveground biomass spectral value ranged between 0.247 and 

0.831 which shown that during the dry period the vegetation greenness was lower than during the wet season. This indicates that the bloomy 

vegetation cover was well dense during the wet season because of sufficient soil moisture useable by plants growth and development. As 

observed in May and December NDVI greenness on the upper left catchment of the rangeland ecosystem, the greenest vegetation is relatively 

high on May as compared to the December period. 
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(a)                                                                                                                    (b) 

Figure 4.41: Vegetation NDVI trend from PROBA-V satellite imagery data for Maasai Mara Rangeland wet (a) and dry (b) season acquired on 

(May and Dec 2018) 
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(a)                                                                                                                   (b) 

Figure 4.42: Vegetation NDVI trend from PROBA-V imagery satellite data for Maasai Mara Rangeland wet (a) and dry (b) season acquired on 

(May and Dec 2019) 

From figure 4.41 and 4.42, it can be observed that vegetation NDVI trend derived from PROBA-V imagery satellite data for Maasai Mara 

Rangeland wet (May) and dry season (Dec) acquired on (May and Dec, 2017, 2018 and 2019). The spectral reflectance for greenness indicating 

blossom vegetation occurred within 0.663 m to 0.828 m  during the wet season in 2019 while dry seasons ranged between 0.775 m and 0.886

m  in December of the same year. This dense greenness in the period was due to high rainfall, which reflects high soil moisture content 

availability in the soil for vegetation growth and development where the net resultant effect was high biomass density. The NDVI ranged 

between 0.117 to 0.0668 in May and Dec 2019 respectively. 
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4.8.1 Naivasha Cropland Ecosystem 

 

(a)                                                                                                 (b) 

Figure 4.43: Vegetation NDVI trend derived from PROBA-V imagery satellite data for Naivasha cropland (a) wet (May) and (b) dry season 

(Dec) acquired on 2017. 

From figure 4.43, 4.44 and 4.45, it can be observed that the NDVI for Naivasha cropland shows that during the month of May 2017, there was 

high NDVI as compared to December 2017. This may have been attributed to high rainfall frequency that occurred during the period. The NDVI 

values ranged from 0.609 to 0.982 m  for vegetation greenness during May period and 0.585 to 0.988 m during the period of December. 

High NDVI was realized due to high reflectance of plants in red (R) to Near infrared (NIR) spectrum band caused by vegetation greenness. The 

highly dense vegetation depicts high NDVI values due to high reflectivity. 
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(a)                                                                                                                    (b) 

Figure 4.44: Vegetation NDVI trend derived from PROBA-V imagery satellite data for Naivasha cropland (a) wet (May) and (b) dry season 

(Dec) acquired on 2018. 
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(a)                                                                                                                             (b) 

Figure 4.45: Vegetation NDVI trend derived from PROBA-V imagery satellite data for Naivasha cropland (a) wet (May) and (b) dry season 

(Dec) acquired on 2019. 
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Figure 4.46: Graphical representation of NDVI trend between January – December in 

Naivasha cropland ecosystem during wet and dry season in 2017. 

Figure 4.46 and 4.47 depict the graphical trend of NDVI of Naivasha Cropland between 

January and December of 2017. The trend indicates that between February and June, there 

was rise in NDVI value due to the greenness of vegetation and November and December. 

This shows that the commencement of planting season in Naivasha happens between that 

period and probably irrigated agriculture practiced in the second phase of cropping towards 

the end of the year (November and December). Similarly, the graph on figure 4.47 shows 

combined representation of spatial annual time series variation of NDVI during wet and dry 

seasons. This could be the reason why most land is gradually transforming from rain-fed to 

irrigated agriculture. 

 

Figure 4.47: Graphical representation of NDVI trend of Naivasha Cropland ecosystem 

between January and December wet and dry season for the period 2017, 2018, and 2019 
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4.8.2 Time Series Analysis of Minimum and Maximum NDVI 

Based on the study, the three years‟ period of 2017, 2018, and 2019 in figure 4.55, that 

maximum and minimum vegetation cover indicates homogenous trend of low vegetation 

cover in the dry season between the months of December, January, and February across the 

consecutive years. The maximum vegetation cover was observed in the month of March 

running through July, September, October, and November in 2018. The vegetation cover 

varied mainly on seasonal rainfall that fell due to the effect of East Africa intertropical 

convergence zone (ITCZ). During the rainy season, most of the rainfall events in 2017, 2018, 

and 2019 indicated that the maximum NDVI values were below 0.5 within the initial two 

months before the onset of the wet season. This was followed by increased NDVI values 

caused by greenness of vegetation cover between the range of 0.753 and 0.999 while there 

was a reduction in maximum NDVI values in the dry period ranged between 0 and 0.200 

caused by decrease in rainfall followed by subsequent decline in vegetation greenness across 

the entire rangeland ecosystem. 

4.8.3 Linear Correlation between Mean Monthly NDVI and Mean Maximum Monthly 

Rainfall 

When measured at the proper spatial and temporal scale, there was a very strong and 

predictable correlation between seasonal precipitation and NDVI. All landmass types have a 

phenology that is highly attuned to the annual cycle of precipitation. Precipitation and 

normalized difference vegetation index (NDVI) values fluctuated widely over the MMNR 

rangeland ecosystem from 2017 to 2019. Although there is a strong relationship between 

NDVI and precipitation, it is not as strongly correlated with temperature over the course of a 

year. Analyses of the entire growing season reveal a direct relationship between the spatial 

pattern of average monthly or annual precipitation and the general temporal or spatial 

distribution of NDVI across the entire research region. Annual rainfall in 2018 was relatively 

high as compared to January 2017 and December 2019, characterized by aboveground 

biomass harvested in wet season of same period as compared to biomass harvested during 

wet, and dry season in 2017 (tables 4.33 to 4.35). During the dry season NDVI coefficient of 

variation analyses showed high instability or variability in 2017 erratic precipitation episodes. 

4.8.4 Time Series Analyses of Mean Monthly Rainfall for 2017-2019 Period in Maasai 

Mara Rangeland Ecosystem 

Almost the entirety of the period from 2017 to 2019 was marked by irregular rainfall 

variability in this region, with seasons of wet and dry spells (Figure 4.48). In 2018, there was 

an increase in precipitation of around 60 mm per month, according to a statistical time series 
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analysis of the mean monthly precipitation for the wet season (June, July, August, and 

September). Except for the year 2019, this made the soil moisture storage and retention 

potentially good for grass/vegetation or plant development virtually all year. Plant growth 

and biomass production are controlled by the seasonality of rain. Mean annual seasonal 

precipitation showed a rise in the west or south-western half of the region, mirroring the 

pattern of plant development in response to variations in rainfall. The amount of rain that falls 

during the wet season in different parts of Maasai Mara varies greatly. Some regions of the 

region, however, get a lot of rain, while the remainder of the downstream areas see relatively 

little precipitation. 

4.8.5 Time Series Analyses of Maximum Mean Monthly Temperature 

The research of mean monthly maximum temperature from 2017–2019 revealed a rise in 

maximum temperature larger than 26oC in virtually fully dry season, in addition to rainfall 

and vegetation change. Even while temperatures dropped from January to March, they rose 

gradually from July through October during the wet season (Figure 4.50). An abrupt drop in 

maximum temperature marked the beginning of the primary rainy season across virtually the 

entire year, especially at the end of the dry season in March or May. It is true that the 

maximum temperature can vary from season to season, however during the dry spell period; 

this is more so than during the rainy times (Appendix C.1). 

 

Figure 4.48: Annual precipitation and temperature during the seasons 

4.8.6 Time Series Analyses of Mean Monthly NDVI for the 2017- 2019 Period 

As observed from rainfall events, the erratic rainy season in dry season supported the soil 

store moisture that was utilized by vegetation such as shrubs, trees and grass growth in 

Maasai Mara rangeland and the mean monthly NDVI time series results indicates an increase 

of NDVI value after dry season (Figure 4.48). The spatial and temporal result of NDVI in the 
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regime depicted an increase of vegetation grass cover in Mara Main particularly in August, 

whereas there was a minimum vegetation cover in Mara Bridge in the month of November, 

December, January, and February in almost the whole three years. 

4.8.7 Statistical Analysis of Total Aboveground Standing Biomass Quantities 

The sites grass biomass in MMNR indicates that maximum NDVI value reflects the 

presence of maximum green biomass, while minimum value reflects minimum green 

biomass. The different between maximum and minimum NDVI values show that biomass 

production varies depending on whether the season is dry or wet. As observed from most 

quadrat site collection, generally, there was high vegetation cover in the wet season (March, 

April, May and July) than dry (January, February, short rains of August, September, October, 

November and December) from the period 2017 to 2019 as a result of good amount of 

rainfall in wet season for vegetation and grass growth. From the seasonal harvested AGB of 

dry matter in dry and wet season, observation made is that there is significant difference that 

exists in production between bi-seasons clipped aboveground biomass (Appendix B.10) as 

statistically shown in tables 4.41 and 4.42. 

4.9 Land Use Land Cover Change in Maasai Mara National Reserve Rangeland and 

Naivasha Cropland Ecosystems 

4.9.1 Maasai Mara National Reserve Rangeland Ecosystem 

The LULC derived from MODIS imagery data for 2009 and 2019 are shown in the figures 

4.49, 4.50, 4.51 and 4.52. In the study, maps were visualised based on the classes of each 

spatial coverage of land use and land cover. Generally, the major land use/covers in MMNR 

includes grassland, shrub-lands, rain-fed cropland, irrigated cropland, urban built-up bare 

land, water bodies, shrub-lands/natural grassland, forest cover (CEB), forest cover (CDB), 

forest cover (C - unknown), forest cover (OEB), forest cover (ODB) and forest cover (O-

unknown) in the lower part of Maasai Mara catchment. Grasslands and shrub lands are 

mainly used for grazing of wildlife or as game reserves and encroachment of Maasai 

livestock herds. The figures 4.49 to 4.52 indicates the analysis of MODIS imagery based on 

land use/cover change in MMNR between 2009 and 2019 and the spatial extent of changes 

between 2017 and 2019 as indicated in table 4.43. From these derived maps, it clearly 

appears that MMNR is predominantly occupied by large percentage of grassland with 46.8% 

(717km
2
) in 2009, about 23.8% (365.4km

2
), 15.8% (273km

2
) of land being under closed 

forest with deciduous broadleaved respectively and natural grassland, as savannah, 

grasslands, or shrub lands, mostly used for grazing livestock and/or wildlife reserves. 

However, between 2009 and 2019, these rangelands have reduced by 3.38% (51.84km
2
) due 
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to encroached transformation of rain-fed cropland to irrigated cropland, whose area has 

increased from 0.82% (12.58km
2
) to 4.20% (64.44km

2
). Similarly, except for the grassland, 

shrub-land, forest cover, and water body, all the other land use/covers have undergone 

gradual change within the last decade.  

Similar findings were established by Mwangi et al. (2017), who discovered that there are 

two systemic transitions (from closed forest to open forest and from open forest to small-

scale agriculture) and that there is a trend (route) of deforestation from closed forest to small-

scale agriculture, with open forest serving as a transitional land cover. These patterns suggest 

previously closed woods are being opened up (perhaps for timber and charcoal) and later 

cultivated. As farming spreads into the clearings, the surviving trees are logged. Between 

1985 and 2003, the authors found that a shift in land tenure (from communal to private) was 

primarily responsible for the loss of MMNR rangeland to mechanized agriculture. 

Mechanized agriculture avoided profiting from rangelands during its expansion from 2003 to 

2014, instead systematically going after profits from subsistence farmers. This indicated that 

tiny plots utilized for smallholder agriculture in the rangeland were merging into larger plots 

suitable for automated production. The natural vegetation has been declining due to opening 

of natural rangelands to agricultural practices that expanded from rain-fed to irrigated 

croplands including inadequate conservation policies and implementation. LULC maps 

(Figures 4.56 to 4.59) displays the base layer products for both Maasai Mara National 

Reserve rangeland followed subsequently by Naivasha cropland ecosystems. 
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Table 4.38: Description of land cover classes in Maasai Mara rangeland ecosystem 

Class Code Land Cover Description 

20 Shrub lands These are areas characterized by a high percentage 

of shrub cover (2 – 5m high). 

30 Grasslands Mainly dominated by grasses (0-0.2m) and herbs 

(0.2-2m). 

41 Rain-fed cropland These are areas occupied by agricultural lands fed 

by rains during certain periods in a year. 

42 Irrigated cropland These are areas transformed from rain-fed 

agricultural practice to irrigated cropping system. 

112 Urban/built up Areas with upcoming commercial or residential 

(low and high-rise) premises, structures, and 

constructed materials. 

114 Bare/sparse vegetation Areas without vegetation or rare vegetation 

thriving. 

116 Water bodies These are areas covered by swamps, rivers, lakes, 

and open waters. 

122 Shrubs/herbaceous 

cover 

Area characterized by high percentage of shrubs 

mainly herbaceous cover. 

124 Forest (evergreen 

broadleaved) 

Are areas predominantly covered by evergreen 

broadleaved tree (> 5m high) with closed canopies 

(> 40% cover). 

126 Forest (deciduous 

broadleaved 

Are areas predominantly covered by deciduous 

broadleaved trees (> 5m high) with closed canopies 

(> 40% cover). 
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Figure 4.49: Land use/cover classification maps using MODIS imagery data of Maasai Mara 

National Reserve from January 2009 through December 2011 

Figure 4.49 shows the LULC maps and respective proportion of cover occupied by each 

class between the year 2009 and 2011 of Maasai Mara National Reserve and rangeland 

ecosystem. The figure indicates that grassland occupies the largest proportion of the entire 

rangeland with 46.75%, which has remained constantly unchanged during the three-year 

period. Shrub-land with 23.82% has also remained unaltered in the same period and similarly 

the rest of the classes such as opened unknown forest cover (15.84%), rain-fed cropland 

(12.32%), forest cover closed unknown (0.82%) and irrigated cropland (0.06%) have been 
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maintained in the entire ecosystem. The rain-fed and irrigated croplands are practiced in 

conservancies and some sections of Mara Triangle where riparian Maasai community has 

encroached into the ecosystem for livelihood. Kariuki et al. (2018) conducted research and 

found that the primary land use varies with precipitation and land tenure, which in turn leads 

in different livelihood options for people. For instance, agriculture dominates the economy 

during wet years, and conservation efforts benefit from more widespread public backing of 

wildlife that attract tourists, such as rhinos, carnivores, and eland, may become extinct. 

 

 

Figure 4.50: Land use/cover classification maps of Maasai Mara National Reserve from 

2013 through 2015 using MODIS imagery data 
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The figure 4.50 shows a constant land use land cover class for grassland, shrubland, 

rainfed cropland and open unknown forest cover which had existed for the past five years 

since 2009 to 2012, however a decrease in land cover occurred between 2013 to 2015 for 

rainfed cropland from 12.32%, 11.79%  to 10.33% and an increase of irrigated cropland from 

0.588% in 2012 to 2.056% in 2015. This indicates the transformation of rainfed to irrigated 

cropland which signifies that some upcoming irrigation systems were being created in the 

area prompted by scarcity of rainfall. Research by Reid et al. (2003) found that wildlife 

populations in the Maasai Mara rangelands are expected to decrease by at least 40 percent, 

and that some species 

 

Figure 4.51: Land use/cover classification maps of Maasai Mara National Reserve in 2017 

through 2018 from MODIS imagery data. 
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Figure 4.51 shows the land use land cover classes of MMNR rangeland and ecosystem for 

two year period between 2017 and 2018, the maps and charts indicates that grassland has 

continued to remain untransformed with 46.75% similar to shrubland with 23.82%. This also 

applies to other land cover classes and open unknown forest cover, closed unknown forest 

cover with rainfed and irrigated croplands occupying the same area for the last decade. 

 

Figure 4.52: Land use Land cover classification representation in percent for Maasai Mara 

rangeland ecosystem in 2019. 

Figure 4.52 shows the LULC classes for the period 2019 and it can be observed that the 

grassland occupies the largest proportion of land cover followed with shrubs that takes 

46.75% and 23.82% respectively. Land use Land cover has remained unchanged of some 

classes for the last decade except in the rain-fed cropland, which decreased in 2013 to 2015 

from 12.32% to 10.33% because of transformed water managed, or irrigated cropland. Due to 

short rains that were received in 2014, moving to irrigated cropland was probably the 

potential farming practices that were done in conservancies surrounding the MMNR 

ecosystem for food production. Most of the small-scale farmers alternatively shifted out of 

cultivation relying on rainfall and opted into venturing irrigation farming using water from 

excavated pans for storage of rainwater. 

Mwangi et al. also discovered that the land surrounding the MMNR was utilized for 

grazing in their study. Between 1976 and 2014, the forest cover in the study area dropped 

from almost 20% to around 7%, primarily due to deforestation in the Mau Forest near the 
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Mara River's headwaters. The biggest shift is the gradual rise of small-scale agriculture and 

the reduction of forest cover. A similar expansion occurred in small-scale agriculture, which 

went from covering roughly 6.5% to 21% of the area during the same time span. In this case, 

the severity of the commission error throughout the intervals of 1976-1985 for the shift to 

small-scale agriculture from open forest is 72.9%. 

Table 4.39: Maasai Mara National Reserve Land Use Land Cover classification between 

2017- 2019 according to FAO land cover classes 

OID Class Name Class 

Code 

Count Area cover 

(%) 

Area cover 

(km
2
) 

0 Shrub land 20 30162 23.818436 365.41 

1 Grassland  30 59199 46.748478 717.20 

2 Cropland, rain-fed 41 10364 12.31824 188.98 

3 Cropland, irrigated 42 5316 0.063964 0.98 

4 Urban/built up area 112 254 0.20058 3.08 

5 Bare/sparse vegetation 114 153 0.120822 1.85 

6 Water bodies 116 1037 0.818902 12.56 

7 Shrubs/herbaceous cover 122 1 0.00079 0.01 

8 Forest (closed, evergreen 

broadleaved) 

124 84 0.066333 

1.02 

9 Forest (closed, deciduous 

broadleaved) 

126 20063 15.84342 

243.07 

The total area of MMNR is 1534.174313km
2 

Table 4.39 shows the LULC classes for MMNR in area cover and its apparent that 

grassland dominates and occupies the greatest area of 717.20 km
2
(46.75%) of the total 

1534.17km
2
 followed by shrub-lands which are sparsely distributed within the entire 

rangeland catchment. Shrub-land occupies 365.42km
2
 (23.82%) with shrubs of herbaceous 

original with least area cover of 0.01 km
2 

(0.0008%). Closed deciduous broadleaved forest 

covers a substantive amount of cover, which was 243.07 (15.84%). 
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Table 4.40: Maasai Mara National Reserve Land Cover and Land Use Statistics for 2017-2019 

Land cover and Land use within 

segments 

Total Surface Area (ha) Variance SE CV RE 

Shrubland Direct Expansion 6,173,224,354 561,202,214 7491.343 6.483  

 Regression Estimation 1,325,579,518 120,507,229 3471.415 3.004 4.657 

Grassland Direct Expansion 7,900,112,700 446,334,051 6680.824 2.946  

 Regression Estimation 8,238,406,919 481,778,182 6941.024 3.060 0.926 

Cropland, rainfed Direct Expansion 174,363,929 34,189,005.8 1849.027 3.094  

 Regression estimation 153,308,604 26,896,246 1640.008 2.744 1.271 

Cropland, irrigated Direct Expansion 700.354 962.987 9.81319 3.162  

 Regression estimation 310.299 620.592 7.877764 2.538 1.552 

Urban/builtup area Direct Expansion 11,337.035 7,085.647 26.61888 2.735  

 Regression estimation 13,257.229 9,469.449 30.77247 3.162 0.748 

Bare/sparse vegetation Direct Expansion 10,994.903 3,435.9071 18.5362 3.162  

 Regression estimation 10,222.385 3,006.584 17.3395 2.958 1.143 

Water bodies Direct Expansion 631,354.068 157,838.517 125.6338 3.162  

 Regression estimation 596,111.817 141,931.39 119.135 2.999 1.112 

Shrubs/herbaceous cover Direct Expansion 0.170 0.284 125.6338 3.162  

 Regression estimation 0.0294 0.1469 0.1212 3.162 1.932 

Forest(closed,evergreen 

broadleaved) 

Direct Expansion 2,058.727 

 

935.785 

 

9.673598 

 

3.060 
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 Regression estimation 2,058.726 935.785 9.673598 3.006 1.000 

Forest(closed, 

deciduous 

broadleaved) 

         Direct Expansion 57.299 6.6633 

 

0.816258 

 

0.979  

            Regression estimation 475.975 54.709 2.339012 3.043 0.122 

    V- Variance, SE – Standard Error, CV- Coefficient of Variation and RE – Relative Efficiency 

Table 4.40 shows direct expansion area estimation and it can be observed that coefficient of variation in the relationship between the ground 

truth and satellite images ranged between 3.004 and 6.483 and its relative efficiency was 4.657. Transformation of rain-fed cropping in cropland 

occupies 188.983km
2
 (12.32%) which may have declined due to increased irrigated cropland with 0.981km

2 
(0.064%) and built-up area 

occupying 3.08km
2
 (0.2%) in the entire area. 
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Table 4.41: Maasai Mara Rangeland Accuracy Assessment Report for Classification of MODIS images 2017, 2018, and 2019 

Confusion Matrix based on Test and Training Area (TTA) mask, S - Shrubland, G- Grassland, Cr – Cropland rain-fed, Ci – Cropland 

irrigated, Bt – Urban/built up, Bsv – Bare/sparse vegetation,  Wb – Water bodies, Shc–Shrubland/herbaceous cover, FCEBl - Forest 

Cover (Closed, evergreen broadleaved), FCDBl – Forest cover (Closed Deciduous Broadleaved). 

 Class Producer’s 

Users S Gl Cr Ci Bt Bsv Wb Shc FCEBl FCDBl Reference  

Totals 

S 105 3 0 0 0 0 0 0 0 2 110 

GI 4 166 1 0 0 0 0 0 0 0 171 

Cr 1 5 50 0 0 0 0 1 0 0 57 

Ci 0 0 0 4 0 0 0 1 0 0 5 

Bt 0 0 0 0 14 0 0 0 0 0 14 

Bl 0 0 0 0 1 32 0 0 1 0 34 

Wb 0 0 0 0 0 0 40 2 0 0 42 

Sng 0 0 0 0 0 0 0 2 0 0 2 

FCEBl 0 0 0 0 1 0 0 0 21 0 22 

FCDBl 0 3 0 0 0 0 0 0 0 84 87 

Classified Totals 110 177 51 4 16 32 40 6 22 86 518 

Accuracy Assessment 

Producer’s 95.5 93.8 98.0 100.0 87.5 100.0 100.0 100.0 95.5 97.7 

User’s 95.5 97.1 87.7 80.0 100.0 94.1 95.24 100.0 95.5 96.6 

Kappa Class 

Overall Accuracy 95.22          

Kappa Index     0.94          
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4.9.2 Naivasha Cropland Ecosystem 

Table 4.42: Description of land cover classes in Naivasha Cropland 

Code Land Cover Description 

10 Arable land (cropland) These are areas covered by growing crops 

(agricultural), ploughed fields, and 

horticultural farms. 

20 Non-arable land Are areas, which are less productive for crop 

production, infertile, and include either 

completely non-vegetated areas or areas under 

very low percent vegetation cover. 

30 Land under water These are areas covered by swamps, rivers, 

lakes, and open waters. 

40 Urban Area Areas with upcoming commercial or 

residential (low and high-rise) premises, 

structures, and constructed materials 

50 Gazetted Forest These are areas predominantly covered by tree 

(> 5m high) with closed canopies (> 40% 

cover). 

60 Grassland Are areas dominated by grasses (0-0.2m) and 

herbs (0.2-2m) 

 

 

Figure 4.53: General Land use land cover distribution of Naivasha Sub-County 
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Figure 4.53 indicates that arable land occupies the largest area in Naivasha potentially 

good for crop production. The land cover has increasingly been rising in the consecutive 

years beginning 2017 to 2019. Land under water has also increased in 2019 despite 

homogeneity in 2017 and 2018. Gazetted forest has maintained its land cover in three 

consecutive years, however built-up area has slightly increased due to increased population, 

and this has risen from 2017, 2018 and 2019. 

 

 

Figure 4.54: Land Use Land Cover Change for Naivasha Cropland in 2009 and 2011 
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Figure 4.54 shows the land use land cover distribution of Naivasha cropland individual 

classes as indicated in the maps and pie charts between 2009 and 2011. It can be noted that 

land use land cover has remained unaltered with rain-fed cropland occupying the largest area 

with 58.96% followed by closed unknown forest cover with 11.59%, deciduous forest cover 

of 9.48% and shrub-land with 7.94%. In comparison to transformation that took place within 

the period, it can be seen that extremely slight changes occurred within the period with slight 

decrease in rain-fed cropland by 0.0001%. The rest of the other land use remained unchanged 

during the three-year‟s period. 

 

 

Figure 4.55: Land Use Land Cover Change for Naivasha Cropland in 2013 and 2015 
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Figure 4.55 shows that Land use cover in Naivasha cropland between 2013 and 2015 rain-

fed cropland had decreased from 59.01% to 58.57% indicating a conversion of rain-fed to 

irrigated cropland (under water management) by 0.44% in the three-year land use 

transformation. An increase of irrigated land rose from 0.77% to 1.23% during the same 

period. The rest of the classes have remained unchanged in the entire ecosystem. The decline 

in land used as rain-fed cropland could probably be the shift caused by upcoming 

horticultural farms particularly floriculture. 

 

 

Figure 4.56: Land cover Land use changes for Naivasha cropland in 2017 and 2018 
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The figure 4.56 shows that rain-fed cropland occupies the greatest area cover with 58.96% 

followed by open unknown forest with 11.59%. It can be observed that all other classes 

remained unchanged during the period. Upcoming irrigation systems being transformed from 

rain-fed cropland in Naivasha cropland are slowly growing. The new upcoming floricultural 

farms with some built up structures such as green houses that require huge investments 

coupled with water scarcity. The rate of transformation in such area will gradually continue 

for many years to realize a change in land cover thus slight transformation could be observed. 

Majority of the land use land cover classes in Naivasha cropland remained unaltered with the 

slightest rise in rain-fed cropland from 58.57% to 58.97% in 2015-2017 while irrigated 

cropland decreased from 1.23% to 0.84% during the same period. In 2018 and 2019, there 

was no great change in land use land cover classes except a slight decrease in rain-fed 

cropland of 0.01% from 58.97 to 58.96% between 2017 and 2019. This probably may have 

been attributed by economic fluctuation leading to closure of most floricultural and other 

cropland farms worsened by Covid-19 pandemic, which retarded the growth and investments 

in cropland. 

 

Figure 4.57: Land use land cover maps and percent representation of Naivasha Cropland 

ecosystem for the period 2019 

Figure 4.57 indicates that in 2019 there was no change in almost land cover classes except 

the conversion of rain-fed to irrigated cropland. Water managed croplands have been the 

major developments in the area in Naivasha cropland, due to the rise of floral investments 

and upcoming built up area which has also been slowly growing. The state of art change in 
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land cover classes is a gradual phenomenon in the area because of huge implications of 

investments especially in shifting from rain-fed to irrigated cropland coupled with high-water 

demand for irrigation caused by scarcity in Naivasha Sub-County. 

4.10 Estimation of Land Cover and Land Use Change 

Level I and level II estimates of land cover and land use were generated by grouping 

together categories that were spatially and temporally similar. Agricultural climate zones, 

landform, water resources, terrain, and human activities all contributed to the catchment's 

varied land use. Most of the land was used for farming, as that was deemed the most 

economically significant human activity. Using a modified version of Anderson (1977), the 

taxonomic categorisation of various types of land cover was used as displayed as follows. 

Table 4.43: Naivasha Land Use Land Cover classification between 2017 and 2019 according 

to FAO land cover classes 

OID Class Name Code Count Area cover (%) Area cover  

(km
2
) 

 Shrub-land 20 22010 7.937710 267.3785 

1 Grassland  30 7514 2.709857 91.28042 

2 Cropland, rain-fed 41 163482 8.958324 1985.987 

3 Cropland, irrigated 42 2325 0.838491 28.24423 

4 Urban/built up area 50 1527 0.550699 18.55007 

5 Bare/sparse vegetation 60 1 0.000361        0.01216 

6 Water bodies 80 11599 4.183076 140.9052 

7 Shrubs/herbaceous 

cover 

90 753 0.271563 9.147488 

8 Forest(closed, evergreen 

broadleaved) 

112 26278 9.476926 319.2264 

9 Forest(closed, 

deciduous broadleaved) 

114 1079 0.389132 13.10775 

10 Forest (closed, mixed) 116 8224 2.965912 99.90553 

11 Forest(open, evergreen 

broadleaved) 

122 32 0.011541 0.388754 

12 Forest(open, deciduous 

broadleaved) 

124 311 0.112159 3.77803 

13 Forest (open, mixed) 126 32149 11.59425 390.5476 
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The table 4.43 shows that the total catchment area is 3,368.45902 km
2 

mainly covered by 

rain-fed cropland that occupies the greatest percent area of 58.96% (1985.99km
2
) and this 

indicates that between 2017 and 2019, rain-fed cropland cover was gradually transforming 

towards irrigated cropland with 0.84% (28.24km
2
) land cover. Other transition includes 

shrub-land cover of 7.94% (267.38km
2
) and grassland of 2.72% (91.28km

2
) which were 

found to be systematically transforming. Similarly, transition from mixed open forest 

(11.59% (390.55km
2
) to mixed closed forest of 2.97% (99.91km

2
) was also found to be a 

dominant transition. The other transition area cover was open, deciduous broadleaved open 

forest occupying 0.11% (3.78km
2
) to closed, deciduous broadleaved forest covering 0.39% 

(13.11km
2
) with slight transition of closed evergreen broadleaved of 9.48% (319.23km

2
) and 

slight transition in water bodies to 4.18% (140.91km
2
)during the period. Observation made is 

that many transitions might in the years been found to be slightly transforming or stationary 

over the entire study period. With the infrastructure development, urban built up is gradually 

upcoming with 0.55% (18.55km
2
) transforming from all forms of land cover usually to 

horticultural farms. This suggests a trend (pathway) of conversion from closed forested area 

to large-scale horticultural farms including small-scale agriculture, with open forest as a 

transitional land cover. The observed reduction of various forms of forest due to deforestation 

was attributed to continuous encroachment to cropland area caused by a series of 

development in terms of urbanization, horticultural (green house) structures, and irrigated 

croplands. 

4.10.1 Area Estimation through Direct Expansion 

This section presents the land cover generated maps resulting from the classification of 

satellite images, accuracy assessment of maps, magnitude determination including rates, 

nature and geographic distribution of land cover changes. The derived thematic maps of land 

cover types in MMNR and Naivasha cropland were extracted from MODIS and Proba-V 

satellite images for the period of 2017, 2018, and 2019. The land cover in this cropland 

displayed includes rain-fed and irrigated agriculture, horticulture (flower farms), build-up 

land, bare land, grassland, water body, and forested land. The classification of croplands was 

divided into two major sub-classes, which appeared different as rain-fed and irrigated 

cropland with dissimilar spectral nature during classification process. The results obtained by 

direct expansion and regression estimation are shown in table 4.44. 
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Table 4.44: Naivasha Cropland Land Cover and Land Use statistics for 2017 - 2019 

Land cover and Land use within  

segments 

Total Surface Area 

(ha) 

Variance SE CV RE 

Shrubland Direct Expansion 130,936,377.80 43,645,459.26 1,765.65 3.459  

 Regression Estimation 105,458,799.00 28,949,474.3 1,437.99 2.817 1.508 

Grassland Direct Expansion 7,743,715.09 3,497,161.65 499.80 2.868  

 Regression Estimation 6,910,820.22 2,845,631.85 450.84 2.587 1.229 

Cropland, rainfed Direct Expansion 18,958,301,251.00 4,915,115,139 18,737.12 4.942  

 Regression estimation 5,536,558,091.00 767,443,696 7,403.88 1.953 6.405 

Cropland, irrigated Direct Expansion 718,750.06 205,357.16 121.11 2.246  

 Regression estimation 529,110.96 569,811.81 201.74 3.742 0.360 

Urban/built-up Direct Expansion 323,217.50 125,695.70 94.75 2.676  

 Regression estimation 228,232.97 245,789.36 132.50 3.742 0.511 

Bare/sparse vegetation Direct Expansion 0.2818 1.3149 0.0270 1.165  

 Regression estimation 0.0075 0.1056 0.0868 3.742 12.450 

Water bodies Direct Expansion 40,356,003.60 12,840,546.60 957.70 3.560  

 Regression estimation 42,544,875.80 14,181,625.30 1,006.47 3.742 0.905 

Shrubs/herbaceous Direct Expansion 45,684.2072.00 35,532.16 50.38 2.885  

 Regression estimation 59,768.9548.00 59,768.96 65.34 3.742 0.594 

Forest (closed,  

evergreen broadleaved) 

Direct expansion 284,388,090.70 72,389,695.83 2,273.92 3.731  
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 Regression estimation 264,240,353.00 62,701,100.80 2,116.28 3.473 1.151 

Forest (closed,          

deciduous broadleaved) 

Direct expansion 163,406.76 69,324.08 70.37 2.812  

 Regression estimation 2,928,465.50 1,576,866.04 335.61 13.412 0.044 

Forest (mixed) Direct expansion 27063189.44 6532494.004 683.09 1.919  

 Regression estimation 26382578.10 6595644.53 686.38 3.599 0.990 

Forest (open, evergreen 

broadleaved) 

Direct expansion 62.16 87.02411912 2.49 3.359  

 Regression estimation 69.40 107.949766 2.78 3.742 0.806 

Forest (open, deciduous 

broadleaved) 

Direct expansion 8320.39 6852.088382 

 

22.12 

 

3.067 

 

 

 Regression estimation 10195.36 10195.3648 26.99 3.742 0.672 

Forest (open, mixed) Direct expansion 720,829,107.10 94314088.77 2595.52 3.481  

 Regression estimation 683,021,174.00 85377646.80 2469.50 3.312 1.105 

 

From table 4.44, the best results of individual classes, were obtained for cropland, rain-fed with a coefficient of variation of 4.94% and a 

regression coefficient of 1.95% with relative efficiency of 6.4%. This may be because the structure of the landmass cover vegetation, consisting 

primarily of crops like forests (closed, evergreen broad leaves) and maize crops, gives a smooth texture and tone colour that gives a separate 

feature class under supervised categorization. Smaller leaves on other crops, like wheat plantations, resulted in a mottled structure and poor tone 

hue in satellite imagery, making it difficult to categorize the plants. The bare/sparse vegetation had the lowest reliability with a coefficient of 

variation of 1.165 and relative efficiency of 12.45%. This could be due to the mixed reflectance from ploughed grounds, quarrying and mixed 

cropping of beans/peas, barley, Lucerne, fodder trees and hay production (Appendix A.8 and B.16). 
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4.10.2 Other Land Use and Land Cover in Naivasha Cropland 

Most parts of Naivasha croplands LULC has been commercialized for flowers (cropland, 

irrigated) instead of the normal farming systems for food security, however, crops such as 

wheat, maize, barley, fodder, and pasture are mainly practiced in most of the subsistence and 

private commercial farms. The cropland stations within Naivasha and their GPS co-ordinates 

were as follows; ITC_KEN_00003 – (-0.5998, 36.5666), Engineer/Mzee Paul Farm where 

entire mixed farming was practiced, however the farmers here are small scale. The other 

cropland was ITC_KEN_00009 – (-0.7538, 36.1909), Kijabe/Ndabibi farm and wheat 

growing in large scale was being done and within ITC_KEN_00011 – (-0.6847, 36.4109), 

Delamere farm, wheat and grass (Burma Rhodes)/Hay/Lucerne for commercial and feedstock 

for the dairy and beef production was also their major activity. The other croplands were 

ITC_KEN_00014 – (-0.64393, 36.4793) Nunjoro farm for Pasture production while 

ITC_KEN_00021 – (-0.7367, 36.4510) KWSTI where most of land is covered by shrubs 

because the institution main concern is the conservation of vegetation for wildlife 

management. 

Table 4.45: Cropping systems in Naivasha cropland with Land Use Land Cover sizes 

Location 

ID 

     Location Name Latitude  Longitude Cropping 

System 

Sampled 

Area (ha) 

00003 Engineer/Paul‟s farm -0.5998 

 

36.5666 Mixed 

Farming/wheat 

0.8 

00009 Kijabe/Ndabibi -0.7538 36.1909 Wheat 1,000 

00011 Delamere farm -0.6847 

 

36.4109 Grass/Hay 

wheat 

10,000 

00014 Nunjoro farm -0.6439  36.4793  Pasture/wheat  500  

00021 Kenya Wildlife Service 

Training Institute  

-0.7367 

 

36.4510 Shrub-land 2,500 

 

4.10.3 Land Classification Accuracy Assessment 

In the study, field surveys were used to assess the accuracy of ground truth for all land 

cover types to determine the reliability of the generated maps and improve the quality of data 

analysis. Publicly available satellite imagery Although the Copernicus hub was crucial in the 

development of reference data products for use in comparing land cover datasets, field 

verification was conducted through the previous performance of site visits that enabled actual 
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land cover comparison with land cover classifications dataset. The accuracy of the producer, 

the accuracy of the user, and the overall accuracy were evaluated in relation to each land 

cover category by comparing field verification data with the classified land cover data. 

The Kappa index of agreement, a matric for quantifying the level of agreement between 

two maps with the same number of classes, was used to ensure accuracy. An error matrix is 

used to characterize these calculated accuracies, showing how the land cover measured in the 

field compares to the various classifications in the dataset. Based on the error matrices used 

to evaluate the categorization values, the producer and user accuracy varied from 80% to 

100% for MMNR, and from 26.53% to 100% and 48.51% to 100% for Naivasha farmland, 

respectively. The accuracy of three of ten MODIS imaging maps (from 2017 and 2018, 

respectively) was assessed using reference data gathered from fieldwork in 2018 and 2019 in 

MMNR and Naivasha farmland.  

Tables 4.46 and 4.51 display the overall accuracy of the MMNR and Naivasha cropland, 

which were 95.22% and 83.30%, respectively, with a Kappa of 0.94 and 0.81 for 14 - land 

cover classes. Maximum likelihood classification statistics and land use/cover maps were 

generated from MODIS and Proba-V images, as shown by the theme maps findings (MLC). 

Generally, values within these ranges are indicative of good representations of the real land 

use and land cover changes, hence they were utilized as the measure of actual agreement with 

the projected output. 
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Table 4.46: Naivasha Cropland Accuracy Assessment Report for Classification of MODIS image 2017, 2018, and 2019 

Confusion Matrix based on Test and Training Area (TTA) mask, S - shrub land, G- Grassland, Cr – Cropland rain-fed, Ci – Cropland 

irrigated, Bt – Urban built up, Bl – Bare land, Wb – Water bodies, Sng – Shrubland/natural grassland, FCEB - Forest Cover (CEB), FCDB 

– Forest cover (CDB), Fc-Unknown – Forest cover (C-Unknown), FQEB – Forest cover (QEB), FODB – Forest cover (ODB), FO-unknown –Forest 

cover (O-unknown) 

User’s Class Producer’

s 

 S GI Cr Ci Bt Bl Wb Sng FCEB FCDB FC-

unknow

n 

FQEB FODB FO-

Unknow

n 

Reference 

Totals 

S 39 2 4 3 1 0 0 2 0 0 0 0 0 0 51 

GI 2 24 0 3 1 0 1 1 0 0 0 0 0 2 34 

Cr 1 2 49 28 9 2 0 0 0 4 0 0 1 4 101 

Ci 0 0 0 13 0 0 0 0 0 0 0 0 0 0 13 

Bt 0 0 0 0 25 0 0 0 0 0 0 0 0 0 25 

Bl 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Wb 0 0 0 0 0 0 42 0 0 0 0 0 0 0 42 

Sng 0 0 0 0 0 0 0 14 0 0 0 0 0 0 14 

FCEB 0 0 0 0 0 0 0 0 55 0 2 0 0 0 59 

FCDB 0 0 0 0 0 0 0 0 0 25 1 0 0 0 26 

FC-Unknown 0 0 1 0 0 0 0 0 0 0 54 0 0 1 56 
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FQEB 0 0 0 0 0 0 0 0 0 0 0 9 0 0 9 

FODB 0 0 0 0 0 0 0 0 0 0 0 0 14 0 14 

FO-Unknown 0 3 0 2 0 0 1 1 0 2 0 1 2 100 112 

Classified 

Totals 

42 31 54 49 36 3 44 18 55 33 58 10 17 107 64 

Accuracy Assessment 

User’s 92.8

6 

77.4

2 

90.7

4 

26.53 69.44 33.33 95.45 77.78 100.0

0 

75.7

6 

93.10 90.00 82.35 93.46  

Producer’

s 

76.4

7 

70.5

9 

48.5

1 

100.0

0 

100.0

0 

100.0

0 

100.0

0 

100.0

0 

93.22 96.1

5 

96.43 100.0

0 

100.0

0 

89.29  

Kappa Class 

Overall Performance 83.30          

Kappa Index   0.81          
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Table 4.46 shows the error matric for test and training mask for Naivasha cropland 

ecosystem, the accuracy assessment analysed indicates that irrigated cropland, built-up area, 

bare land, water bodies, and shrub-land/natural grassland were correctly classified in 

reference to the ground truth data. The overall accuracy was 83.30 and the Cohen‟s Kappa 

index was 0.81, which depicted satisfactory outcome on classification accuracy as 

determined. The users and producer‟s accuracy performance ranged between 26.53 to 100% 

accuracy and 48.51 to 100% accuracy respectively. 

4.10.4 Common Characteristics of Rangeland and Cropland 

Based on the rangeland ecosystem findings, MMNR being native grassland has existed 

over five decades is characterized by dominant native species of low water-demanding 

grasses, sparse shrubs, and trees along streams and river catchment. The main grass species 

includes a) pennisetum (b) purple needlegrass (c) ryegrass (d) stipa calamagrotis (e) 

harpachne and others (Appendix A.9). The radiation balance of a given area is likely to shift 

if natural vegetation is cleared to make way for agricultural use. Albedo increases, in theory, 

when land is devoid of vegetation for at least part of the year, because more of the sun's rays 

are reflected back into space. Decreased soil water-holding capacity is another negative effect 

on the environment. Soil compaction can lessen soil porosity as natural vegetation is cleared 

to make way for farming, lowering infiltration capacity and raising erosion hazards. 

Converting forested areas to farmland reduces occult precipitation in mountainous regions 

because monoculture croplands absorb less precipitation than do forests with several layers of 

vegetation (Holder, 2004). To be sure, local climate shifts due to changes in radiation and 

water balance result from the conversion of forestland to agricultural land. Soil moisture 

fluctuations appear to be more pronounced in forested areas after rainfall. This land use also 

results in the driest soil on average compared to the other vegetation types in the area. 

4.11 Contribution of the Study to the Scientific World and the Economy 

4.11.1 Contribution to Knowledge 

The core contribution of the study is the meteorological, soil data obtained for this 

rangeland ecosystem through GIS, and remote sensing technology can form part of 

government databank for meteorological department and other research scientist. The study 

forms part of the underlying issues affecting the deterioration of this rangeland and it 

highlights the key area about the trend of soil moisture variability with the unfolding climate 

variability with its effect on biomass formation for increasing wildlife densities in Maasai 

Mara. MMNR being one of the economic hub and tourism attraction reserves that injects 

about 30% of Kenyan economy. The hub requires constant evaluation and monitoring of its 
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changing environmental behaviour for being a sole provider of biomass as feedstock to 

wildlife industry.  

In addition, this research shows that GIS and RS techniques have made it possible for 

rangelands and croplands to be made available on digital platforms as a virtual ecosystem. 

For the best possible use of land and water, this allows hydrologists and other stakeholders to 

conduct a comprehensive scenario analysis. The models relative sensitivity analysis for 

APSIM and Hydrus-1D identified that the input parameters that influenced the predicted 

outcome were AGB and yield, soil moisture storage and retention, infiltration rate during 

precipitation events of high and low/erratic rainy seasons followed by dry season.  

The study results can be utilized by government planners, hydrologist, environmentalist 

and stakeholders to mitigate against the negative effects of land degradation especially 

encroachment of livestock, expansion of conservancies and encroachment during dry seasons. 

Wildlife and livestock trampling causes soil matrix aggregation and disaggregation hence 

gradual compaction resulting from natural processes, climate variation, enhanced by off-road 

traffic of tourist during the rainy months of the year. This consequently encourage excess 

surface runoff, decreased soil moisture and subsequently decreased biomass production for 

maintenance of wildlife densities. 

4.11.2 Contribution to Planning and Policy 

The dwindling soil moisture storage and retention capacities may be due to the soil 

compaction caused by moving tourist traffic in-road and off-road, livestock and wildlife 

trampling and natural processes accelerated with the unfolding climate variability, however, 

such occurrence promotes excess runoff, diminished infiltration rate. To this effect most of 

the biomass growth retards owing to the diminished soil moisture levels within the bi-seasons 

of wet and dry periods. The blooming net primary productivity of biomass relies on the 

capability of soil potential to store and retain water for a reasonable period before recharge by 

another rainfall event.  

The deficiency of adequate biomass caused by variability of soil moisture in this rangeland 

pose unforeseeable problem due to the pressure of carrying capacity caused by increasing 

wildlife population densities. In the study, anticipated growth of wildlife population over time 

and livestock encroachment highly dependence on the natural rangeland for biomass feeds. 

As observed without proper sustainability of this rangeland environment, the reserve may in 

future not be feasible for wildlife survival, and will forcefully become a migratory habitat for 

herbivores such zebra and wildebeest. The study will enable both National and Narok County 

government forge ways and options of planning and making decisions for proper ecosystem 
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management in sound and sustainable manner. The findings will also make the key 

stakeholders to review their management policies on land use, water resources conservation, 

biomass trends monitoring and evaluation including setting up modalities for systematic 

handling of the studied ecosystems in order to avert serious biomass/yield and water sources 

in the degraded catchment. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

i). In this study, the CRNS probe provided good estimates of spatial surface soil moisture for 

MMNR experimental site through comparison with 5TM-ECH20 and gravimetric 

sampling in relation to rainfall events. Findings indicate that, the use of 5TM-ECH2O 

probes, deeper soil layers showed higher amount of soil moisture. Most importantly, time 

series variation of volumetric water content of spatially distributed probes in wet season 

ranged between 0.11 and 0.32m
3
m

-3
 (0.16m

3
m

-3
) and in dry season ranged between 0.04 

and 0.17m
3
m

-3
 (0.11m

3
m

-3
) across MMNR rangeland ecosystem respectively. Moreover, 

on Naivasha cropland, volumetric water content in wet season ranged between 0.13 to 

0.37m
3
/m

3
 (0.22m

3
m

-3
) and dry season ranged between 0.06 to 0.22m

3
m

-3
 (0.14m

3
m

-3
) 

respectively. However, water retention shown that field capacity of soil water content at -

3 bars ranged between 0.16cm
3
H2O/cm

3
soil and 0.22cm

3
H2O/cm

3
soil across the 

rangeland. Soil moisture in both ecosystems showed seasonal variation in response to 

cumulative rainfall patterns and an annual periodicity, revealing temporal variation 

throughout the study period that can be broken down into three distinct phases: a 

moisture-gaining phase, a moisture-losing phase, and a moisture-stable phase. This 

demonstrates the need for depth scaling when using the cosmic-ray neutron probe 

readings to infer root-zone soil moisture. 

ii). The estimated bulk density according to profile dropped by roughly 2.1% to 11.12% from 

upper layers (0-5cm) to deeper ones at the bottom, suggesting that the compacted soil 

layer at the bottom is likely linked to the pedological properties of the investigated soil 

profile (75–80 cm). Results showed that a well-calibrated APSIM model could be used to 

confidently simulate rangeland and agricultural environments, predicting biomass, grain 

yield, and yield-water content relationships based on meteorological factors, minimal soil, 

and cultivar characteristics for short-term simulations. APSIM proves to be an acceptable 

and reliable model that can be used as a research and decision tool to enhance production 

systems in croplands. Finally, data partitioning enabled the APSIM model perform 

accurately the simulation of above ground grass biomass (dry matter) in MMNR and 

subsequent use of Naivasha Cropland independent dataset for wheat biomass and yield 

validation. The selected Hydrus-1D and APSIM models were found capable of simulating 

hydrological processes in semi-arid region of MMNR and Naivasha cropland in Kenya. 
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This involved modelling the behaviour of rangeland biomass and cropland biomass and 

yields using ground based measurements, remote sensing, GIS, and ancillary data. 

iii). The significance of detecting and quantifying land cover through NDVI was to examine the 

impact of soil moisture trends on biomass production for a period of 3 to 10 years and 

evaluate the behaviour of biomass seasonality in rangeland and cropland ecosystems. The 

satellite time series analysis of 2017„s, 2018„s and 2019„s from previous decade since 

2009indicates different vegetation coverage. The environmental degradation during periods 

of fluctuating rainfall coupled with expansion of settlements, that is, mechanized cultivation 

for commercial wheat production like in the northern loita plains. This may result in decline 

of biomass net primary productivity which drastic decline in wildlife population with 

subsequent drop in tourism as a revenue generator for both national and county governments.  

The arable land (km
2
) in Naivasha cropland are Maiella (265.24km

2
) representing 

(21.1%), Biashara (264km
2
) corresponding to 20.1%, MaaiMahiu (222.64km

2
) (17.7%), 

Olkaria (221.6km
2
) (17.6%), Naivasha-East (106.4km

2
) (8.5%), Hellsgate (81.2km

2
) (6.5%), 

Viwandani (80.22km
2
) (63.4%) and Lakeview(16.6km

2
) (13.2%) due to climate variation at 

some seasons are rendered less productive in crop production. The Maiella and Biashara area 

are more productive than other arable land and Lake View is the least productive. The 

attributing factors to low production are management practices, soil conditions, and erratic 

rainfall that may supply inadequate soil moisture for cereal crops such as wheat, barley, and 

maize crop. Therefore, in analyzing and mapping the trends of LULC changes within MMNR 

rangeland and Naivasha cropland ecosystems provide a basis for proper guiding policies, 

management, strategic land use planning, and decision-making on resource protection. 

5.2 Recommendations 

Specific recommendations that have been drawn from this research for further studies are 

suggested as follows: 

i). This research used CRNS, 5TM-ECH2O sensors and gravimetric technique to estimate soil 

moisture behaviour in rangeland ecosystem; therefore, further research should be conducted 

using different dielectric sensor such as Ground Penetrating Radar (GPR). It is therefore 

important to consider the number of calibrations carried out against the accuracy of the 

calibrated CRNS to have an accurate and valid estimate of soil moisture regimes. Therefore, 

multifactor experiments should be conducted to fully understand the climate‐vegetation‐soil 

interaction under different climate change scenarios. 

ii). Research should also be conducted by modelling the impact of soil heterogeneity and 

spatial variability of soil hydraulic characteristics in different layers of the soil profile in more 
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similar ecosystems using a different tool such as SWAT or VIC and other crop models to 

have a more comprehensive understanding of the systems hydrology and crop biomass and 

yield simulations. Moreover, a more secure installation of weather stations and spatial 

distribution of 5TM-ECH2O soil moisture and temperature probe cables should be buried at 

least 30cm below the soil surface to provide realistic data and damages from hyenas and 

wildfire.  

iii). In terms of Land Use Land Cover changes, ecosystems policies governing the 

conversion of grassland to either rain-fed or irrigated croplands for sustainable biomass 

production used for wildlife/livestock carrying capacities. Secondly, protection and 

conservation of MMNR from degradation by commercial wheat farming (agricultural and 

livestock) should instead be alternatively directed to venture into Naivasha arable cropland 

areas which instead can be favourable for wheat and livestock production. MMNR should be 

preserved for wildlife and tourism attraction. Croplands too require protection and 

conservation management for provision of future food security, therefore participatory 

approach of all stakeholders‟(inter-government agencies and private sector), and research 

institutions should collaborate in the area of data gathering and analysis in order to fully 

access and utilize the best resources in the country‟s national reserves and croplands. 
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APPENDICES 

Appendices A: Plates 

Appendix A.1: Installed Cosmic-Ray Neutron Sensor at Maasai Mara National Reserve 

 

Appendix A.2: Installed 5TM-ECH20 (Soil Moisture, Soil Temperature Capacitance 

Sensors) profiles and Data Download at Maasai Mara Field Sites 

 

Appendix A.3: Bulk Soil Samples Excavated from Experimental Sites for Analysis 
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Appendix A.4: Field Core Ring Samples at Laboratory for Weight Measurements and Oven 

Drying 

 

Appendix A.5: Quadrat Aboveground Grass Biomass Harvesting via 50cm by 50cm Sample 

Metal Frame and Laboratory Oven Drying 

 

Appendix A.6: Characteristics of Standing Grass Biomass Over Wet and Dry Season 
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Appendix A.7: Dominant Grass Species (a) Pennisetum (b) Purple Needlegrass (c) Ryegrass 

(d) Stipa Calamagrotis (e) Harpachne Mara Natural Grassland Ecosystem

 

Appendix A.8: Wheat Farms and Hay Production at Kijabe/Ndabibi Cropland on 28/5/2018 

 

Appendix A.9: Spatial Distribution of 5TM-ECH2O Soil Moisture, Soil Temperature 

Stations in Maasai Mara Rangeland and Naivasha Cropland Ecosystem 
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Appendices B: Tables 

Appendix B.1: Gravimetric Soil Samples Cored from 24 Sampling Points at six Sample Profiles making (144 Samples) 

from 0-5cm, 5-10cm, 10-15cm, 15-20cm, 20-25cm and 25-30cm Soil Depths. 

Sampling 

Point_ID 

Ring Distance Angle 

Deg 

Profile 

Depth (cm) 

Foil wgt (g) Sample wet 

wgt + Core 

ring (g)  

Oven dry 

wgt (g) + 

Core ring 

(g) 

Mass of 

water 

content 

(g) 

Core ring 

+Foil 

after oven 

dry soil 

(g) 

Mass of 

oven –

dry soil 

samples 

(g) 

Core diameter 

(cm) 

Core 

ring 

height 

(cm) 

Core 

ring 

volume 

(cm
3
) 

C300 75m 300 20 0.51 261.58 247.49 14.09 96.01 95.50 5.06 5.1 102.50 

C300 75m 300 25 0.51 268.58 239.78 28.80 96.15 95.64 5.05 5.1 102.50 

C300 75m 300 30 0.49 269.42 234.42 35.00 98.09 97.60 5.05 5.1 102.50 

             

D0, D360 175m 0 5 0.49 244.88 230.63 14.25 96.10 95.61 5.70 4.05 81.40 

D0 175m 0 10 0.46 260.02 245.77 14.25 105.51 105.05 5.65 4.05 81.40 

D0 175m 0 15 0.52 272.59 258.18 14.41 115.03 114.51 5.65 4.05 81.40 

D0 175m 0 20 0.50 268.63 252.51 16.12 112.40 111.90 5.70 4.00 80.40 

D0 175m 0 25 0.55 278.16 255.45 22.71 108.83 108.28 5.65 4.02 80.80 

D0 175m 0 30 0.53 285.76 244.52 41.24 108.13 107.60 5.70 4.05 81.40 

             

D60 175m 60 5 0.51 230.37 218.47 11.90 114.93 114.42 5.65 4.05 81.40 

D60 175m 60 10 0.53 229.56 213.94 15.62 96.82 96.29 5.71 4.05 81.40 
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D60 175m 60 15 0.51 247.80 229.37 18.43 110.25 109.74 5.65 4.05 81.40 

D60 175m 60 20 0.49 280.40 247.63 32.77 115.48 114.99 5.65 4.05 81.40 

D60 175m 60 25 0.48 276.46 240.10 36.36 112.22 111.74 5.65 4.05 81.40 

D60 175m 60 30 0.48 264.45 222.09 42.36 95.29 94.81 5.70 4.05 81.40 

             

D120 175m 120 5 0.50 223.29 209.48 13.81 113.34 112.84 5.65 4.05 81.40 

D120 175m 120 10 0.52 212.60 197.65 14.95 97.98 97.46 5.70 4.05 81.40 

D120 175m 120 15 0.50 276.38 246.30 30.08 110.01 109.51 5.70 4.05 81.40 

D120 175m 120 20 0.49 271.92 239.74 32.18 112.11 111.62 5.65 4.05 81.40 

D120 175m 120 25 0.50 267.73 229.75 37.98 108.95 108.45 5.65 4.10 82.41 

D120 175m 120 30 0.53 273.72 233.08 40.64 110.61 110.08 5.65 4.05 81.40 

             

D180 175m 180 5 0.52 208.28 194.32 13.96 96.26 95.74 5.70 4.10 82.41 

D180 175m 180 10 0.56 240.5 219.32 21.18 111.77 111.21 5.68 4.05 81.40 

D180 175m 180 15 0.60 254.79 222.29 32.50 111.89 111.29 5.61 4.05 81.40 

D180 175m 180 20 0.53 272.65 226.42 46.23 111.61 111.08 5.65 4.05 81.40 

D180 175m 180 25 0.56 288.50 239.67 48.83 128.44 127.88 5.65 4.10 82.41 

D180 175m 180 30 0.56 282.15 240.11 42.04 114.59 114.03 5.65 4.06 81.60 

             

D240 175m 240 5 0.47 227.33 212.27 15.06 92.86 92.39 5.05 5.10 102.50 

D240 175m 240 10 0.48 241.3 223.92 17.38 97.35 96.87 5.05 5.10 102.50 
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D240 175m 240 15 0.47 248.96 218.55 30.41 92.81 92.34 5.02 5.09 102.30 

D240 175m 240 20 0.46 249.38 220.80 28.58 92.95 92.49 5.05 5.09 102.30 

D240 175m 240 25 0.48 260.18 224.99 35.19 93.75 93.27 5.00 5.09 102.30 

D240 175m 240 30 0.52 263.77 228.16 35.61 93.03 92.51 5.05 5.05 101.50 

             

D300 175m 300 5 0.48 228.18 211.35 16.83 98.15 97.67 5.05 5.10 102.50 

D300 175m 300 10 0.56 230.14 202.88 27.26 96.35 95.79 5.05 5.05 101.50 

D300 175m 300 15 0.51 259.28 223.24 36.04 95.06 94.55 5.08 5.10 102.50 

D300 175m 300 20 0.44 253.62 214.07 39.55 95.71 95.27 5.05 5.10 102.50 

D300 175m 300 25 0.47 246.86 209.82 37.04 90.95 90.48 5.05 5.10 102.50 

D300 175m 300 30 0.49 250.35 214.85 35.50 

 

93.99 93.50 5.00 5.06 101.70 

 

Appendix B.2: Gravimetric and Volumetric Water Content of Maasai Mara Soil Samples 

Sampling 

Point_ID 

Ring  

Distance 

Angle 

Deg 

Profile 

Depth 

(cm) 

Mass of 

oven dry 

soil (g) 

Mass of 

water  

content 

(g) 

Volume of 

soil (cm
3
) 

Bulk 

density 

(g/cm
3
) 

Gravimetric 

water content 

(%) 

Volumetric 

water content 

(cm
3
/cm

3
) 

C300 75m 300 20 95.50 13.58 102.50 0.932 14 0.13 

C300 75m 300 25 95.64 28.29 102.50 0.933 30 0.28 

C300 75m 300 30 97.60 34.51 102.50 0.952 35 0.34 



228 

          

D0, D360 175m 0, 360 5 95.61 13.76 81.40 1.175 14 0.17 

D0 175m 0, 360 10 105.05 13.79 81.40 1.291 13 0.17 

D0 175m 0, 360 15 114.51 13.89 81.40 1.407 12 0.17 

D0 175m 0, 360 20 111.90 15.62 80.40 1.392 14 0.19 

D0 175m 0, 360 25 108.28 22.16 80.80 1.340 20 0.27 

D0 175m 0, 360 30 107.60 40.71 81.40 1.322 38 0.50 

          

D60 175m 60 5 114.42 11.39 81.40 1.406 10 0.14 

D60 175m 60 10 96.29 15.09 81.40 1.183 16 0.19 

D60 175m 60 15 109.74 17.92 81.40 1.348 16 0.22 

D60 175m 60 20 114.99 32.28 81.40 1.413 28 0.40 

D60 175m 60 25 111.74 35.88 81.40 1.373 32 0.44 

D60 175m 60 30 94.81 41.88 81.40 1.165 44 0.51 

D120 175m 120 5 112.84 13.31 81.40 1.386 12 0.16 

D120 175m 120 10 97.46 14.43 81.40 1.197 15 0.18 

D120 175m 120 15 109.51 29.58 81.40 1.345 27 0.36 

D120 175m 120 20 111.62 31.69 81.40 1.371 28 0.39 

D120 175m 120 25 108.45 37.48 82.41 1.316 35 0.45 

D120 175m 120 30 110.08 40.11 81.40 1.352 36 0.49 
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D180 175m 180 5 95.74 13.44 82.41 1.162 14 0.16 

D180 175m 180 10 111.21 20.62 81.40 1.366 19 0.25 

D180 175m 180 15 111.29 31.90 81.40 1.367 29 0.39 

D180 175m 180 20 111.08 45.70 81.40 1.365 41 0.56 

D180 175m 180 25 127.88 48.27 82.41 1.552 38 0.59 

D180 175m 180 30 114.03 41.48 81.60 1.397 36 0.51 

          

D240 175m 240 5 92.39 14.59 102.50 0.901 16 0.14 

D240 175m 240 10 96.87 16.90 102.50 0.945 17 0.16 

D240 175m 240 15 92.34 29.94 102.30 0.903 32 0.29 

D240 175m 240 20 92.49 28.12 102.30 0.904 30 0.27 

D240 175m 240 25 93.27 34.71 102.30 0.912 37 0.34 

D240 175m 240 30 92.51 35.09 101.50 0.911 38 0.35 

          

D300 175m 300 5 97.67 16.35 102.50 0.953 17 0.16 

D300 175m 300 10 95.79 26.70 101.50 0.944 28 0.26 

D300 175m 300 15 94.55 35.53 102.50 0.922 38 0.35 

D300 175m 300 20 95.27 39.11 102.50 0.929 41 0.38 

D300 175m 300 25 90.48 36.57 102.50 0.883 40 0.36 

D300 175m 300 30 93.50 35.01 101.70 0.919 37 0.34 
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Table 4.12: Analysis of Variance (ANOVA) on Spatial Distribution of Volumetric Water 

Content with Depth at 10 M Concentric Distance to CRNS in Maasai Mara Rangeland 

Ecosystem (Main Station) 

Source Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

0.716 5 0.077 ≤0.05 95 0.104 7.135 0.428 

Within 

Groups 

0.063 30 0.011      

Total  35       

P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation, 

 LSD, least significant difference between means. 

Mean Square of Profile (MSP) - 0.077, Mean Square Error (MSE) – 0.0108, Sum of Square 

Error (SSE) – 0.2688 

Source Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

0.548 5 0.011 ≤0.05 95 0.210 2.015 0.493 

Within 

Groups 

0.062 30 0.033      

Total  35       

P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation,  

LSD, least significant difference between means 

Mean Square of Profile (MSP) - 0.088, Mean Square Error (MSE) – 0.044, Sum of Square 

Error (SSE) – 0.044 
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Source Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

0.557 5 0.087 ≤0.05 95 0.246 1.436 0.578 

Within 

Groups 

0.063 30 0.060      

Total  35       

P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation, LSD, least significant difference between means. 

Mean Square of Profile (MSP) - 0.087, Mean Square Error (MSE) – 0.060, Sum of Square 

Error (SSE) – 0.044 

Source Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

0.632 5 0.082 ≤0.05 95 0.341 0.704 0.802 

Within 

Groups 

0.106 30 0.116      

Total  35       

P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation, LSD, least significant difference between means 

Mean Square of Profile (MSP) - 0.082, Mean Square Error (MSE) – 0.116, Sum of Square 

Error (SSE) – 0.116 
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Appendix B.3: Soil Textural Classes within the Main Weather Station 

SOIL TEXTURE ANALYSIS (HYDROMETER METHOD) – Mara Main station – 

Concentric measurements within the CRNS distance from 10m, 25m, 50m, 75m, 150m 

and 175m across soil layers. 

KEY:  SC – Sandy Clay,    SCL – Sandy Clay Loam,    SL – Sandy Loam,    C - Clay 

Sample 

Description 

Soil 

Depth(cm) 

Lab. 

No./2018 

Sand %    Clay % Silt % Texture 

Grade 

A0 2.5 3605 72 18 10 SL 

A60 2.5 3606 76 18 6 SL 

A120 2.5 3607 76 18 6 SL 

A180 2.5 3608 82 16 2 SL 

A240 2.5 3609 74 16 10 SL 

A300 2.5 3610 80 12 8 SL 

Mean 2.5  77 16 7 SL 

A0 12.5 3611 70 22 8 SCL 

A60 12.5 3612 64 32 4 SCL 

A120 12.5 3613 72 24 4 SCL 

A180 12.5 3614 64 28 8 SCL 

A240 12.5 3615 64 24 12 SCL 

A300 12.5 3616 68 22 10 SCL 

Mean 12.5  67 25 8 SCL 

A0 22.5 3617 52 40 8 SC 

A60 22.5 3618 58 38 4 SC 

A120 22.5 3619 54 40 6 SC 

A180 22.5 3620 56 42 2 SC 

A240 22.5 3621 56 40 4 SC 

A300 22.5 3622 56 36 8 SC 

Mean 22.5  56 39 5 SC 

B0 2.5 3623 74 16 10 SL 

B60 2.5 3624 76 12 12 SL 

B120 2.5 3625 74 18 8 SL 

B180 2.5 3626 78 16 6 SL 

B240 2.5 3627 76 16 8 SL 
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B300 2.5 3628 72 18 10 SL 

Mean 2.5  75 16 9 SL 

B0 12.5 3629 70 18 12 SL 

B60 12.5 3630 72 18 10 SL 

B120 12.5 3631 68 24 8 SCL 

B180 12.5 3632 76 16 8 SL 

B240 12.5 3633 74 16 10 SL 

B300 12.5 3634 78 14 8 SL 

Mean 12.5  73 18 9 SL 

B0 22.5 3635 74 18 8 SL 

B60 22.5 3636 58 36 6 SL 

B120 22.5 3637 58 36 6 SL 

B180 22.5 3638 62 32 6 SL 

B240 22.5 3639 60 30 10 SL 

B300 22.5 3640 60 36 4 SL 

Mean 22.5  62 31 7 SCL 

C0 2.5 3641 64 28 8 SCL 

C60 2.5 3642 74 14 12 SL 

C120 2.5 3643 76 16 8 SL 

C180 2.5 3644 72 14 14 SL 

C240 2.5 3645 78 14 8 SL 

C300 2.5 3646 76 12 12 SL 

Mean 2.5  74 16 10 SL 

C0 12.5 3647 80 16 4 SL 

C60 12.5 3648 76 16 8 SL 

C120 12.5 3649 74 22 4 SCL 

C180 12.5 3650 66 24 10 SCL 

C240 12.5 3651 70 24 6 SCL 

C300 12.5 3652 68 16 16 SL 

Mean 12.5  72 20 8 SL 

C0 22.5 3653 76 22 2 SCL 

C60 22.5 3654 70 30 0 SCL 

C120 22.5 3655 64 24 12 SCL 
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C180 22.5 3656 66 24 10 SCL 

C240 22.5 3657 58 36 6 SC 

C300 22.5 3658 66 30 4 SCL 

Mean 22.5  67 27 6 SCL 

D0 2.5 3659 70 18 12 SL 

D60 2.5 3660 68 18 14 SL 

D120 2.5 3661 66 22 12 SCL 

D180 2.5 3662 70 18 12 SL 

D240 2.5 3663 70 18 12 SL 

D300 2.5 3664 64 26 10 SL 

Mean 2.5  68 20 12 SL 

D0 12.5 3665 72 18 10 SL 

D60 12.5 3666 60 30 10 SCL 

D120 12.5 3667 64 28 8 SCL 

D180 12.5 3668 60 32 8 SCL 

D240 12.5 3669 56 38 6 SC 

D300 12.5 3670 52 44 4 SC 

Mean 12.5  61 31 8 SCL 

D0 22.5 3671 72 18 10 SL 

D60 22.5 3672 60 34 6 SCL 

D120 22.5 3673 56 38 6 SC 

D180 22.5 3674 56 40 4 SC 

D240 22.5 3675 60 36 4 SC 

D300 22.5 3676 54 42 4 SC 

Mean   60 34 6 SCL 

 

Appendix B.4: Soil Texture Classification of within CRNS footprint and 5TM-ECH20 sensor 

stations in Maasai Mara National Reserve 

Orientation Distance 

from CRS 

(m) 

Soil 

Depth 

(cm) 

       

Sand% 

       

Clay% 

        

Silt% 

Textural 

Class 

Ring A 10 P1 (0-5) 77 16 7 SL 

  P2 (10-15) 67 25 8 SCL 
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  P3 (20-25) 56 39 5 SC 

Ring B 25 P1 (0-5) 75 16 9 SL 

  P2 (10-15) 73 18 9 SL 

  P3 (20-25) 62 31 7 SCL 

Ring C 75 P1 (0-5) 74 16 10 SL 

  P2 (10-15) 72 20 8 SL 

  P3 (20-25) 67 27 6 SCL 

Ring D 175 P1 (0-5) 68 20 12 SL 

  P2 (10-15) 61 31 8 SCL 

  P3 (20-25) 60 34 6 SCL 

 

 

SOIL TEXTURE ANALYSIS (HYDROMETER METHOD) – 5TM-ECH20 stations 

spatially distributed within the catchment 

KEY:SC – Sandy Clay,      SCL – Sandy Clay Loam,    SL – Sandy Loam,            C - Clay 

Sample 

Description 

Soil 

Depth(cm) 

Lab.No./2018 Sand % Silt % Clay % Texture  

Grade 

Mara Main stn 5 3677 70 22 8 SCL 

,, 10 3678 72 22 6 SCL 

,, 20 3679 58 36 6 SC 

,, 40 3680 54 42 4 SC 

,, 80 3681 52 38 10 SC 

       

V-Section 5 3682 64 22 14 SCL 

,, 10 3683 60 24 16 SCL 

,, 20 3684 52 38 10 SC 

,, 40 3685 56 38 6 SC 

,, 80 3686 54 36 10 SC 

       

Talek 5 3682 68 24 8 SCL 

,, 10 3683 66 30 4 SCL 

,, 20 3684 60 36 4 SC 

,, 40 3685 58 36 6 SC 
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,, 80 3686 56 36 8 SC 

       

Up-Stream 5 3687 60 28 12 SCL 

,, 10 3688 56 36 8 SC 

,, 20 3689 58 38 4 SC 

,, 40 3690 56 40 4 SC 

,, 80 3691 52 40 8 SC 

       

Helicopter 5 3692 76 16 8 SL 

,, 10 3693 78 18 4 SL 

,, 20 3694 66 30 4 SCL 

,, 40 3695 66 34 0 SCL 

,, 80 3696 72 26 2 SCL 

       

Nice Bridge 5 3697 72 22 6 SCL 

,, 10 3698 70 24 6 SCL 

,, 20 3699 66 28 6 SCL 

,, 40 3700 64 28 8 SCL 

,, 80 3701 68 26 6 SCL 

       

Olimisigioi 5 3702 64 28 8 SCL 

,, 10 3703 60 32 8 SCL 

,, 20 3704 38 46 16 C 

,, 40 3705 64 32 4 SCL 

,, 80 3706 54 42 4 SC 

       

Mara Bridge 5 3707 68 22 10 SCL 

,, 10 3708 76 16 8 SL 

,, 20 3709 62 24 14 SCL 

,, 40 3710 64 24 12 SCL 

,, 80 3711 60 26 14 SCL 

       

Kissinger 5 6124 80  14 6 SL 
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,, 10 6125 78  14 8 SL 

,, 20 6126 68  26 6 SCL 

,, 40 6127 70  26 4 SCL 

,, 80 6128 62  30 8 SCL 

       

Ashnil 5 6129 78  14 8 SL 

,, 10 6130 72  22 6 SCL 

,, 20 6131 64  32 4 SCL 

,, 40 6132 66  32 2 SCL 

,, 80 6133 54  38 8 SC 

 

Appendix B.5: Soil Bulk Density of Maasai Mara National Reserve Ecosystem Sites 

Sample Location Soil 

Dep

th 

(cm) 

Ring No. Lab 

No.

/20

18 

Bulk Density (g 

cm^-3) 

Remar

ks 

Mara Main  5 2 614

9 

1.40 F 

Mara Main 10 5 615

0 

1.45 F 

Mara Main 20 11 615

1 

1.34 F 

Mara Main 40 14 615

2 

1.19 F 

Mara Main 80 8 615

3 

1.25 F 

Kissinger 5 1 615

4 

1.52 F 

Kissinger 10 4 615

5 

1.62 F 

Kissinger 20 7 615

6 

1.71 F 

Kissinger 40 13 615 1.72 F 
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7 

Kissinger 80 22 615

8 

1.52 F 

Ashnil 5 3 615

9 

1.64 F 

Ashnil 10 6 616

0 

1.55 F 

Ashnil 20 15 616

1 

1.63 F 

Ashnil 40 X120 616

2 

1.55 F 

Ashnil 80 16 616

3 

1.22 F 

 

Source Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

2.024 9 0.140 ≤0.05 95 1.250 0.090 4.321 

Within 

Groups 

0.066 40 1.563      

Total  49       

P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation, LSD, least significant difference between means. 

Mean Square of Profile (MSP) - 0.140, Mean Square Error (MSE) – 1.563, Sum of Square 

Error (SSE) – 0.695 

Sample 

Location 

Soil Depth 

(cm) 

Ring No. Lab 

No./2018 

Bulk Density 

(g cm^-3) 

Remarks 

Helicopter 5 21 2761 1.37 F 

Helicopter 10 7 2762 1.11 NF 

Helicopter 20 19 2763 1.33 NF 

Helicopter 40 11 2764 1.13 F 
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Full – F, Not Full – NF 

Helicopter 80 5 2765 1.10 NF 

V- section 5 13 2766 1.24 F 

V- section 10 17 2767 1.20 F 

V- section 20 23 2768 1.15 F 

V- section 40 2 2769 0.93 NF 

V- section 80 9 2770 1.28 F 

Up-stream 5 1 2771 1.17 F 

Up-stream 10 3 2772 1.27 F 

Up-stream 20 16 2773 1.12 F 

Up-stream 40 15 2774 1.21 F 

Up-stream 80 14 2775 1.16 F 

Talek 5 6 2776 0.98 NF 

Talek 10 18 2777 1.10 F 

Talek 20 20 2778 1.75 F 

Talek 40 12 2779 1.35 F 

Talek 80 4 2780 1.19 F 

Nice-Bridge 5 22 2781 1.18 F 

Nice-Bridge 10 8 2782 1.29 F 

Nice-Bridge 20 24 2783 1.27 F 

Nice-Bridge 40 10 2784 1.09 F 

Nice-Bridge 80 8 2785 1.12 F 

Mara-bridge 5 4 2786 1.16 F 

Mara-bridge 10 2 2787 1.18 F 

Mara-bridge 20 3 2788 1.07 F 

Mara-bridge 40 12 2789 1.26 F 

Mara-bridge 80 10 2790 1.14 NF 

Olimisigioi 5 15 2791 0.84 NF 

Olimisigioi 10 14 2792 1.13 NF 

Olimisigioi 20 7 2793 1.00 F 

Olimisigioi 40 13 2794 1.22 F 

Olimisigioi 80 16 2795 1.35 F 
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Appendix B.6: Soil Particle Density of Maasai Mara Rangeland Sites 

Sample Description/lab. No. Mara main(6134) Mara main(6135) Mara main(6136) Mara main (6137) Mara main(6138) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.23 33.3 40.14 28.75 33.62 33.3 28.32 33.00 33.25 33.36 

Wt. pyknometer + soil(ws) 43.84 42.12 58.47 47.91 42.83 42.16 47.01 45.65 45.27 46.10 

Wt. pycnometer + soil + water 

(wsw) 

90.93 89.2 102.81 94.89 90.42 89.06 93.79 92.30 91.07 92.14 

Pycnometer + water(ww) 84.74 83.87 92.04 83.95 84.78 83.8 83.13 84.84 83.66 84.59 

Particle density(g.cm^-3) 2.39 2.52 2.42 2.32 2.57 2.45 2.32 2.43 2.60 2.45 

Average density(g.cm^-3) 2.46 2.37 2.51 2.38 2.53 

 

Sample Description/lab. No. Kissinger 

(6139) 

Kissinger 

(6140) 

Kissinger (6141) Kissinger (6142) Kissinger (6143) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.62 33.26 33.38 33.34 33.30 33.34 33.40 33.30 32.97 33.4 

Wt. pyknometer + soil(ws) 44.43 45.30 45.4 45.82 45.4 42.1 48.1 42.12 48.13 45.27 

Wt. pycnometer + soil + water (wsw) 90.41 90.53 91.56 92.05 91.55 89.03 93.07 89.20 93.36 90.68 
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Pycnometer + water(ww) 83.86 83.65 84.34 84.90 84.33 83.77 84.31 83.87 84.34 83.57 

Particle density(g.cm^-3) 2.53 2.33 2.5 2.34 2.47 2.50 2.47 2.52 2.46 2.49 

Average density(g.cm^-3) 2.53 2.42 2.49 2.50 2.48 

      

Sample Description/lab. No. Ashnil (6144) Ashnil (6145) Ashnil (6146) Ashnil (6147) Ashnil (6148) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.34 33.32 33.30 33.34 33.31 33.25 33.31 33.30 33.40 33.30 

Wt. pyknometer + soil(ws) 44.1 42.12 44.77 45.18 46.0 45.27 44.24 45.71 44.12 43.28 

Wt. pycnometer + soil + water (wsw) 91.01 90.00 91.10 91.40 92.27 91.07 90.8 91.84 92.08 91.46 

Pycnometer + water(ww) 84.63 84.73 84.20 84.30 84.92 83.66 84.34 84.46 85.60 85.55 

Particle density(g.cm^-3) 2.45 2.49 2.51 2.49 2.37 2.60 2.44 2.46 2.52 2.45 

Average density(g.cm^-3) 2.47 2.50 2.49 2.45 2.49 

 

 

Sample Description/lab. No. Nicebridge (3773) Nicebridge (3774) Nicebridge (3775) Nicebridge (3776) Nicebridge (3777) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.41 27.86 33.449 45.503 33.436 42.696 33.424 42.549 33.468 42.697 
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Wt. pyknometer + soil(ws) 47.53 40.23 45.166 56.705 44.158 55.251 48.144 53.946 48.424 58.731 

Wt. pycnometer + soil + 

water (wsw) 

93.08 84.10 91.99 99.775 91.21 100.394 93.282 100.02 93.946 102.259 

Pycnometer + water(ww) 84.96 76.713 84.94 93.104 85.00 93.165 84.979 92.983 84.892 93.117 

Particle density(g.cm^-3) 2.35 2.48 2.50 2.47 2.37 2.35 2.29 2.61 2.53 2.32 

Average density(g.cm^-3) 2.41 2.49 2.36 2.45 2.42 

 

 

Sample Description/lab. No. Talek (3778) Talek (3779) Talek (3780) Talek(3781) Talek (3782) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.23 42.32 33.27 42.36 33.25 42.38 33.53 42.61 33.3 42.38 

Wt. pyknometer + soil(ws) 43.45 55.30 48.83 61.43 45.81 53.58 44.81 54.44 46.59 59.87 

Wt. pycnometer + soil + water 

(wsw) 

90.61 100.52 94.18 104.48 92.00 99.35 92.07 99.75 93.65 101.11 

Pycnometer + water(ww) 84.65 92.74 84.69 92.74 84.61 92.73 85.08 93.21 84.65 92.14 

Particle density(g.cm^-3) 2.39 2.49 2.56 2.59 2.42 2.44 2.62 2.23 3.09 2.05 

Average density(g.cm^-3) 2.44 2.58 2.43 2.43 2.57 
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Sample Description/lab. No. Marabridge 

(3788) 

Marabridge 

(3789) 

Marabridge 

(3790) 

Marabridge 

(3791) 

Marabridge 

(3792) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.36 42.49 33.34 42.47 33.37 42.47 33.37 42.47 33.35 42.36 

Wt. pyknometer + soil(ws) 44.76 55.89 48.39 56.97 45.09 55.88 48.43 56.40 46.00 57.71 

Wt. pycnometer + soil + water 

(wsw) 

91.63 101.03 93.23 101.56 90.42 100.7 93.06 100.94 92.03 101.73 

Pycnometer + water(ww) 84.79 92.98 84.45 92.89 83.94 92.58 84.78 92.81 84.63 92.16 

Particle density(g.cm^-3) 2.49 2.50 2.39 2.48 2.23 2.53 2.22 2.40 2.40 2.65 

Average density(g.cm^-3) 2.50 2.44 2.38 2.31 2.53 

      

Sample Description/lab. No. Helicopter (3793) Helicopter (3794) Helicopter (3795) Helicopter (3796) Helicopter (3797) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.36 42.43 33.3 42.41 33.36 42.42 33.33 42.42 33.34 42.40 

Wt. pyknometer + soil(ws) 46.10 57.38 46.08 56.30 46.17 56.04 45.66 54.05 45.42 55.40 

Wt. pycnometer + soil + water 

(wsw) 

92.41 101.89 91.36 101.01 91.72 100.66 91.56 99.47 91.59 100.08 
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Sample Description/lab. No. V-section (3798) V-section (3799) V-section (3800) V-section (3801) V-section (3802) 

      

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.997

3 

0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.31 42.41 33.25 42.90 33.34 42.42 33.32 42.41 33.63 42.80 

Wt. pyknometer + soil(ws) 44.43 54.97 45.27 54.20 45.46 55.61 47.30 54.81 44.43 52.02 

Wt. pycnometer + soil + water 

(wsw) 

90.71 100.09 91.07 99.78 91.76 100.51 92.20 100.20 90.56 98.40 

Pycnometer + water(ww) 84.58 92.95 83.66 92.90 84.84 92.95 84.44 92.82 83.89 92.84 

Particle density(g.cm^-3) 2.21 2.31 2.60 2.55 2.32 2.34 2.24 2.38 2.61 2.51 

Average density(g.cm^-3) 2.27 2.57 2.33 2.31 2.56 

 

 

 

     

Sample Description/lab. No. Olimisiogioi Olimisiogioi (3804) Olimisiogioi (3805) Olimisiogioi (3806) Olimisiogioi (3807) 

Pycnometer + water(ww) 84.59 92.78 83.89 92.57 84.45 92.91 84.62 92.85 84.64 92.81 

Particle density(g.cm^-3) 2.58 2.55 2.40 2.54 2.31 2.31 2.28 2.32 2.35 2.26 

Average density(g.cm^-3) 2.57 2.47 2.31 2.30 2.31 
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(3803) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.997

3 

0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.33 42.46 33.30 42.37 33.3 42.41 33.34 42.49 33.45 42.60 

Wt. pyknometer + soil(ws) 47.97 56.53 43.71 55.15 42.12 52.08 44.33 55.60 51.21 59.96 

Wt. pycnometer + soil + water 

(wsw) 

92.14 100.84 90.45 100.50 88.98 98.34 90.87 100.41 94.95 103.32 

Pycnometer + water(ww) 83.92 92.86 84.69 92.84 83.87 92.73 84.77 92.82 85.07 93.20 

Particle density(g.cm^-3) 2.27 2.30 2.23 2.49 2.37 2.38 2.24 2.37 2.25 2.39 

Average density(g.cm^-3) 2.29 2.36 2.37 2.30 2.32 

 

 

Sample Description/lab. No. Upstream (3808) Upstream (3809) Upstream (3810) Upstream (3811) Upstream (3812) 

Soil depth (cm) 5 10 20 40 80 

Pyknometer No. 1 2 1 2 1 2 1 2 1 2 

Density of water 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 0.9973 

Wt. Pyknometer (wa) 33.41 42.56 33.37 42.57 33.34 42.45 33.34 42.52 33.55 42.40 

Wt. pyknometer + soil(ws) 48.81 58.91 45.81 58.58 50.35 59.51 48.50 55.69 51.43 55.40 
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Wt. pycnometer + soil + water 

(wsw) 

93.11 102.56 92.33 102.49 95.03 102.96 93.51 101.10 94.68 100.08 

Pycnometer + water(ww) 84.31 93.28 85.04 93.31 85.01 93.14 84.93 93.20 84.45 92.81 

Particle density(g.cm^-3) 2.33 2.31 2.41 2.34 2.43 2.35 2.30 2.49 2.33 2.26 

Average density(g.cm^-3) 2.32 2.37 2.39 2.40 2.30 

 

Particle density      

Source Sum of 

squares (SS) 

Degrees of 

freedom (df) 

Mean squares 

(MS) 

P value CI (%) SD F statistics LSD 

Between Groups 0.376 9 0.011 ≤0.05 95 0.332 0.104 1.146 

Within Groups 0.025 40 0.110      

Total  49       

P value - Significant at 0.05 probability level, F – F ratio, CI – Confidence interval level (%), SD – Standard deviation, LSD, least significant 

difference between means, 

Mean Square of Profile (MSP) - 0.011, Mean Square Error (MSE) – 0.033, Sum of Square Error (SSE) – 0.247 
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Appendix B.7: Total Organic Carbon Concentration of Main Mara Meteorological Station 

and 5TM-ECH2O Probe sites 

Soil 

Sample 

ID 

Sample reference Station 

ECH20 Soil  

Moisture Main Location 

Soil 

Depth 

(cm) 

Total Organic 

Carbon (%) 

Class 

2705 Talek 5 2.28 Adequate 

2706 Talek 10 1.84 Moderate 

2707 Talek 20 1.75 Moderate 

2708 Talek 45 1.16 Low 

2709 Talek 80 0.98 Low 

2710 Mara Bridge 5 1.81 Moderate 

2711 Mara Bridge 10 1.62 Moderate 

2712 Mara Bridge 20 1.31 Moderate 

2713 Mara Bridge 45 1.10 Low 

2714 Mara Bridge 80 0.92 Low 

2715 Olimisiogioi 5 2.30 Moderate 

 Olimisiogioi 10 2.13 Moderate 

 Olimisiogioi 20 1.86 Moderate 

2716 Olimisiogioi 45 1.20 Low 

2717 Olimisiogioi 80 0.64 Low 

2718 Upstream 5 1.85 Moderate 

2719 Upstream 10 1.62 Moderate 

2720 Upstream 20 1.41 Moderate 

2721 Upstream 45 0.92 Low 

2722 Upstream 80 0.53 Low 

2723 Nice bridge 5 2.29 Moderate 

2724 Nice bridge 10 1.98 Moderate 

2725 Nice bridge 20 1.72 Moderate 

2726 Nice bridge 45 0.92 Low 

2727 Nice bridge 80 0.46 Low 

2728 Helicopter 5 1.85 Moderate 

2729 Helicopter 10 1.66 Moderate 

2730 Helicopter 20 1.34 Moderate 
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2731 Helicopter 45 0.80 Low 

2732 Helicopter 80 0.52 Low 

2733 V-section 5 1.95 Moderate 

2734 V-section 10 1.64 Moderate 

2735 V-section 20 1.26 Moderate 

2736 V-section 45 0.99 Low 

2737 V-section 80 0.74 Low 

2738 Mara Main 5TM- ECH20 5 2.25 Moderate 

2739 Mara Main 5TM- ECH20 10 2.00 Moderate 

2740 Mara Main 5TM- ECH20 20 1.49 Moderate 

2741 Mara Main 5TM- ECH20 40 1.26 Low 

2742 Mara Main 5TM- ECH20 80 1.04 Low 

6114 Kissinger 5 2.39 Moderate 

6115 Kissinger 10 1.95 Moderate 

6116 Kissinger 20 1.58 Moderate 

6117 Kissinger 40 0.82 Low 

6118 Kissinger 80 0.42 Low 

6119 Ashnil 5 2.11 Moderate 

6120 Ashnil 10 1.81 Moderate 

6121 Ashnil 20 1.47 Moderate 

6122 Ashnil 40 1.11 Low 

6123 Ashnil 80 0.42 Low 

 

Appendix B.7a: Analysis of variance of sites total organic carbon concentration 

Source 

 

Sum of 

squares 

(SS) 

Degrees 

of 

freedom 

(df) 

Mean 

squares 

(MS) 

P 

value 

CI 

(%) 

SD F 

statistics 

LSD 

Between 

Groups 

14.523 9 0.121 ≤0.05 95 1.294 0.072 4.473 

Within 

Groups 

12.687 40 1.675      

Total  49       
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P value - Significant at the 0.05 probability level, F – F ratio, CI – Confidence interval level 

(%), SD – Standard deviation, LSD, least significant difference between means. 

Mean Square of Profile (MSP) - 0.121, Mean Square Error (MSE) – 1.675, Sum of Square 

Error (SSE) – 0.745 

Appendix B.8: Infiltration test – Maasai Mara Meta Plains – Main Weather Station 

Elapsed 

time 

(mins) 

Height of receding water 

from reference point (cm) 

Inner/Outer ring – 30/55cm,                       

Height - 25cm 

Infiltration during the period 

Maasai 

Mara 

Main 

Before 

Filling 

After 

Filling 

Depth (cm) Accumulated 

Infiltration 

(cm) 

Average 

infiltration rate 

(cm/hr) 

0  10.0 0.0 0.0 0.0 

2  12.7 2.7 2.7 81.0 

5  13.7 1.0 3.7 44.4 

7  13.9 0.2 3.9 33.4 

9  14.0 0.1 4.0 26.7 

11  14.4 0.4 4.4 24.0 

13  14.7 0.3 4.7 21.7 

15  14.9 0.2 4.9 19.6 

17  15.0 0.1 5.0 17.7 

19  15.1 0.1 5.1 16.1 

24  15.5 0.4 5.5 13.8 

29  16.0 0.5 6.0 12.4 

34  16.3 0.3 6.3 11.1 

39  16.7 0.4 6.7 10.3 

44  17.4 0.3 7.0 9.6 

49  17.7 0.3 7.3 8.9 

59  18.2 0.5 7.8 7.9 

69  18.7 0.5 8.3 7.2 

79  19.2 0.5 8.8 6.7 

89  19.8 0.6 9.4 6.3 

99  20.3 0.5 9.9 6.0 

109  20.9 0.6 10.5 5.8 
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119  21.5 0.6 11.1 5.6 

129  22.1 0.6 11.7 5.4 

Elapsed 

time 

(mins) 

Height of receding 

water from reference 

point (cm) 

Inner/Outer ring – 30/55cm,                       Height 

– 25cm 

Infiltration during the period 

Kissinger 

Station 

Before 

filling 

After filling Depth (cm) Accumulated 

Infiltration 

(cm) 

Average 

infiltration  rate 

(cm/hr) 

0  10.0 0.0 0.0 0.0 

2  9.3 0.7 0.7 21.0 

5  8.9 0.4 1.1 13.2 

7  9.2 0.3 1.4 12.0 

9  9.0 0.2 1.6 10.7 

11  8.8 0.2 1.8 9.8 

13  8.5 0.3 2.1 9.7 

15  7.9 0.6 2.7 10.8 

17  7.2 0.7 3.4 12.0 

19  7.0 0.5 3.9 12.3 

24  6.5 0.5 4.4 11.0 

29  6.0 0.5 4.9 10.1 

34  5.9 0.9 5.8 10.2 

39  5.6 0.3 6.1 9.4 

44  5.2 0.4 6.5 8.9 

49  4.9 0.3 6.8 8.3 

59  4.5 0.4 7.2 7.3 

69  4.0 0.5 7.7 6.7 

79  3.7 0.3 8.0 6.1 

89  3.4 0.3 8.3 5.6 

99  3.2 0.2 8.5 5.2 

109  3.0 0.2 8.7 4.8 

119  0.0 0.0 8.7 4.4 

129  0.0 0.0 8.7 4.1 
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Appendix B.9: Spatial soil water characteristics at various soil depth and soil water retention 

Table 4.23: Spatial soil water characteristics at 15-20 cm soil depth and soil water retention 

Site_ID 

 

Soil 

Depths 

(cm) 

%Sand %Clay %Silt FC 

(m
3
/m

3
) 

WP 

(m
3
/m

3
) 

Saturation 

(m
3
/m

3
 ) 

Infiltration 

rate (m/hr) 

Avail 

Water 

(m
3
/m

3
) 

Bulk 

Density 

(g/cm
3
) 

Textural 

Class 

Mara-main 20 58 36 6 0.289 0.199 0.489 0.167 0.090 1.355 SC 

V-section 20 52 38 10 0.307 0.209 0.496 0.162 0.098 1.336 SC 

Talek 20 60 36 4 0.286 0.199 0.487 0.163 0.087 1.359 SC 

Upstream 20 58 38 4 0.296 0.208 0.492 0.147 0.088 1.347 SC 

Helicopter 20 66 30 4 0.257 0.173 0.473 0.242 0.093 1.352 SCL 

Kissinger 20 68 26 6 0.241 0.157 0.463 0.348 0.084 1.422 SCL 

Nice Bridge 20 66 28 6 0.250 0.165 0.469 0.291 0.085 1.408 SCL 

Olimisigioi 20 38 46 16 0.368 0.253 0.517 0.145 0.115 1.281 C 

Ashnil 20 64 32 4 0.266 0.182 0.478 0.208 0.084 1.384 SCL 

Mara Bridge 20 62 24 14 0.242 0.147 0.463 0.453 0.095 1.423 SCL 

Average 20 58 35 8 0.286 0.195 0.487 0.179 0.091 1.360 SC 
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Table 4.24: Spatial soil water characteristics at 35-40 cm soil depth and soil water retention 

Site_ID 

 

Soil 

Depths 

(cm) 

%Sand %Clay %Silt FC 

(m
3
/m

3
) 

WP 

(m
3
/m

3
) 

Saturation 

(m
3
/m

3
 ) 

Infiltration 

rate (m/hr) 

Avail 

Water 

(m
3
/m

3
) 

Bulk 

Density 

(g/cm
3
) 

Textural 

Class 

Mara-main 40 54 42 4 0.318 0.227 0.500 0.127 0.091 1.325 SC 

V-section 40 56 38 6 0.300 0.209 0.493 0.152 0.091 1.344 SC 

Talek 40 58 36 6 0.289 0.199 0.489 0.167 0.090 1.355 SC 

Upstream 40 56 40 4 0.307 0.218 0.496 0.136 0.089 1.336 SC 

Helicopter 40 66 34 2 0.271 0.191 0.480  0.174 0.080 1.379 SCL 

Kissinger 40 70 26 4 0.239 0.157 0.462  0.343 0.082 1.426 SCL 

Nice Bridge 40 64 28 8 0.253 0.165 0.470 0.297 0.088 1.404 SCL 

Olimisigioi 40 64 32 4 0.266 0.182 0.478 0.208 0.084 1.384 SCL 

Ashnil 40 66 32 2 0.264 0.182 0.476 0.204 0.082 1.388 SCL 

Mara Bridge 40 64 24 12 0.239 0.147 0.462 0.445 0.092 1.426 SCL 

Average 40 60 34 6 0.279 0.190 0.484 0.188 0.089 1.368 SCL 
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Table 4.25: Spatial soil water characteristics at 75-80 cm soil depth and soil water retention 

Site_ID 

 

Soil 

Depths 

(cm) 

%Sand %Clay %Silt FC 

(m
3
/m

3
) 

WP 

(m
3
/m

3
) 

Saturatio

n (m
3
/m

3
 ) 

Infiltration 

rate (m/hr) 

Avail 

Water 

(m
3
/m

3
) 

Bulk 

Density 

(g/cm
3
) 

Textural 

Class 

Mara-main 80 52 38 10 0.307 0.209 0.496 0.162 0.098 1.336 SC 

V-section 80 54 36 10 0.296 0.199 0.491 0.178 0.096 1.348 SC 

Talek 80 56 36 8 0.292 0.199 0.490 0.172 0.093 1.352 SC 

Upstream 80 52 40 8 0.314 0.218 0.499 0.145 0.096 1.328 SC 

Helicopter 80 72 26 2 0.236 0.157 0.460 0.337 0.079 1.430 SCL 

Kissinger 80 62 30 8 0.262 0.173 0.476 0.253 0.089 1.390 SCL 

Nice Bridge 80 68 26 6 0.241 0.157 0.463 0.348 0.084 1.422 SCL 

Olimisigioi 80 54 42 4 0.318 0.227 0.500 0.127 0.091 1.325 SC 

Ashnil 80 54 38 8 0.303 0.209 0.494 0.157 0.094 1.340 SC 

Mara Bridge 80 60 26 14 0.251 0.155 0.469 0.376 0.096 1.407 SCL 

Average 80 59 34 8 0.280 0.190 0.485 0.190 0.075 1.366 SCL 

 

 

 

 

 

 



254 

Appendix B 10: Biomass water equivalent (BWE) used in the calibration of cosmic ray neutron sensor 

Sample 

Number 

Bearing 

Degrees 

(0 N) 

Distance 

(m) 

Sample 

Area 

(m
2
) 

Biomass 

Wet 

Weight 

in Bag  

(g) 

Biomass 

Dry 

Weight 

in Bag 

(g) 

Khaki 

Bag 

Weight 

(g) 

Biomass 

Wet 

Weight 

(g) 

Biomass 

Dry 

Weight 

(g) 

Vegetation 

Water 

Percent 

(%) 

Standing 

Wet 

Biomass 

(kg/m
2
) 

Standing 

Dry 

Biomass 

(kg/m
2
) 

Biomass 

Water 

Equivalent, 

BWE 

(kg/m
2
 = 

mm of 

H2O) 

1 0 10 0.25 462.00 226.54 12.02 449.98 214.52 52.33 1.80 0.86 1.37 

2 120 10 0.25 445.00 176.92 12.50 432.50 164.42 61.98 1.73 0.66 1.40 

3 240 10 0.25 368.00 160.20 10.38 357.62 149.82 58.11 1.43 0.60 1.13 

4 60 25 0.25 462.00 226.54 12.02 449.98 214.52 52.33 1.80 0.86 1.37 

5 180 25 0.25 414.00 165.00 10.59 403.41 154.41 61.72 1.61 0.62 1.30 

6 300 25 0.25 524.00 245.63 10.62 513.38 235.01 54.22 2.05 0.94 1.58 

7 0 75 0.25 381.00 202.24 10.67 370.33 191.57 48.27 1.48 0.77 1.09 

8 120 75 0.25 463.00 151.00 11.25 451.75 139.75 69.06 1.81 0.56 1.52 

9 240 75 0.25 535.00 267.27 12.50 522.50 254.77 51.24 2.09 1.02 1.57 

10 60 175 0.25 416.00 228.35 11.42 404.58 216.93 46.38 1.62 0.87 1.18 

11 180 175 0.25 400.00 219.86 10.59 389.41 209.27 46.26 1.56 0.84 1.13 

12 300 175 0.25 450.00 172.97 10.73 439.27 162.24 63.07 1.76 0.65 1.43 

            

1.34 
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Appendix B.11: Measured Above Ground Biomass in Maasai Mara National Reserve 

Table 4.90: Observed Biomass, Kissinger, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

Latitudes                  Longitudes 

Quadrat Area 

size (m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.558890 
 

35.236623 0.5m x 0.5m 0.25 0.236 

 

0.097 

 

3.880 0.388 

B -1.558888 35.236670 0.5m x 0.5m 0.25 0.249 

 

0.098 3.920 0.392 

C -1.558828 35.236678 0.5m x 0.5m 0.25 0.182 

 

0.084 

 

3.360 0.336 

D -1.558898 35.236559 0.5m x 0.5m 0.25 0.153 

 

0.082 

 

3.280 0.328 

E -1.558717 35.236668 0.5m x 0.5m 0.25 0.123 

 

0.090 

 

3.600 0.360 

F -1.558600 35.236640 0.5m x 0.5m 0.25 0.198 

 

0.098 3.920 0.392 

Mean     0.190 0.092 3.66 0.366 

Mean 0.366kg/m
2
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Table 4.91: Observed Biomass, Kissinger, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

    Latitudes         Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A   -1.558890 
 

35.236623 0.5m x 0.5m 0.25 0.366 

 

0.137 

 

5.480 0.548 

B -1.558888 35.236670 0.5m x 0.5m 0.25 0.424 

 

0.189 7.560 0.756 

C -1.558828 35.236678 0.5m x 0.5m 0.25 0.316 

 

0.128 

 

5.120 0.512 

D -1.558898 35.236559 0.5m x 0.5m 0.25 0.300 

 

0.119 

 

4.760 0.476 

E -1.558717 35.236668 0.5m x 0.5m 0.25 0.350 

 

0.188 

 

7.520 0.752 

F -1.558600 35.236640 0.5m x 0.5m 0.25 0.363 

 

0.122 4.880 0.488 

Mean     0.353 0.147 5.89 0.589 

Mean 0.589kg/m
2 
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Table 4.92: Observed Biomass, Ashnil, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

     Latitudes              Longitudes 

Quadrat Area 

size (m) 

Area in 

m
2
 

Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.452340 35.072132 0.5m x 0.5m 0.25 0.225 0.094 3.760 0.376 

 

B -1.452387 35.072171 0.5m x 0.5m 0.25 0.275 

 

0.102 4.080 0.408 

C -1.452429 35.072187 0.5m x 0.5m 0.25 0.186 

 

0.089 3.560 0.356 

D -1.452395 35.071170 0.5m x 0.5m 0.25 0.232 

 

0.099 3.960 0.396 

E -1.452316 35.072266 0.5m x 0.5m 0.25 0.124 

 

0.087 3.480 0.348 

F -1.452401 35.072242 0.5m x 0.5m 0.25 0.146 

 

0.085 3.400 0.340 

Mean     0.198 0.093 3.710 0.371 

Mean = 0.371kg/m
2 
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Table 4.93: Observed Biomass, Ashnil, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

      Latitudes          Longitudes 

Quadrat Area 

size (m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.452340 
 

35.072132 0.5m x 0.5m 0.25 0.492 

 

0.153 6.120 0.612 

B -1.452387 35.072171 0.5m x 0.5m 0.25 0.399 

 

0.110 4.400 0.440 

C -1.452429 35.072187 0.5m x 0.5m 0.25 0.386 

 

0.095 3.800 0.380 

D -1.452395 35.071170 0.5m x 0.5m 0.25 0.381 

 

0.095 3.800 0.380 

E -1.452316 35.072266 0.5m x 0.5m 0.25 0.351 

 

0.130 5.200 0.520 

F -1.452401 35.072242 0.5m x 0.5m 0.25 0.392 

 

0.073 2.920 0.292 

Mean     0.400 0.109 4.370 0.437 

Mean = 0.437kg/m
2
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Table4.94: Observed Biomass, Mara Bridge, 12/12/2017_Dry Season 

Sample 

ID 

Coordinates 

      Latitudes          Longitudes 

Quadrat  

Area size (m) 

Area in 

m
2
 

Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.538332 
 

35.036152 0.5m x 0.5m 0.25 0.126 

 

0.064 2.560 0.256 

B      -1.538384 35.036156 0.5m x 0.5m 0.25 0.174 

 

0.052 2.080 0.208 

C -1.538427 35.036168 0.5m x 0.5m 0.25 0.187 

 

0.072 2.880 0.288 

D -1.538398 35.036186 0.5m x 0.5m 0.25 0.139 

 

0.068 2.720 0.272 

E -1.538417 35.036178 0.5m x 0.5m 0.25 0.121 

 

0.066 2.640 0.264 

F -1.538401 35.036241 0.5m x 0.5m 0.25 0.143 

 

0.074 2.960 0.296 

Mean     0.143 0.066 2.640 0.264 

Mean 0.264kg/m
2
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Table 4.95: Observed Biomass, Mara Bridge, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

Latitudes            Longitudes 

Quadrat 

Area size (m) 

Area 

in m
2
 

Wet 

wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

Standard 

Error 

A -1.538332 
 

35.036152 0.5m x 0.5m 0.25 0.345 

 

0.063 2.520 0.252  ± 0.056 

B -1.538384 35.036156 0.5m x 0.5m 0.25 0.296 

 

0.068 2.720 0.272   ± 0.036 

C -1.538427 35.036168 0.5m x 0.5m 0.25 0.392 

 

0.073 2.920 0.292 ± 0.016 

D -1.538398 35.036186 0.5m x 0.5m 0.25 0.373 

 

0.083 3.320 0.332 ± 0.024 

E -1.538417 35.036178 0.5m x 0.5m 0.25 0.338 

 

0.080 3.200 0.320 ± 0.012 

F -1.538401 35.036241 0.5m x 0.5m 0.25 0.329 

 

0.095 3.800  0.380 ± 0.072 

Mean     0.346 0.077 3.080   0.308  

Mean 0.308kg/m
2
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Table 7.0: Observed Biomass, Helicopter, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

    Latitudes            Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.530420 
 

35.174223 0.5m x 0.5m 0.25 0.232 

 

0.104 4.160 0.416 

B -1.530482 35.174290 0.5m x 0.5m 0.25 0.194 

 

0.097 3.880 0.388 

C -1.530329 35.174233 0.5m x 0.5m 0.25 0.186 

 

0.099 3.960 0.396 

D -1.530498 35.174267 0.5m x 0.5m 0.25 0.107 

 

0.092 3.680 0.368 

E -1.530317 35.174228 0.5m x 0.5m 0.25 0.126 

 

0.089 3.560 0.356 

F -1.530402 35.174289 0.5m x 0.5m 0.25 0.184 

 

0.102 4.080 0.408 

Mean     0.172 0.097 3.89 0.389 

Mean = 0.389kg/m
2
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Table 7.1: Observed Biomass, Helicopter, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

       Latitudes            Longitudes 

Quadrat 

Area size (m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A    -1.530420 
 

35.174223 0.5m x 0.5m 0.25 1.932 

 

0.109 4.360 0.436 

B -1.530482 35.174290 0.5m x 0.5m 0.25 1.894 

 

0.103 4.120 0.412 

C -1.530329 35.174233 0.5m x 0.5m 0.25 1.886 

 

0.105 4.200 0.420 

D -1.530498 35.174267 0.5m x 0.5m 0.25 1.907 

 

0.104 4.160 0.416 

E -1.530317 35.174228 0.5m x 0.5m 0.25 1.426 

 

0.098 3.920 0.392 

F -1.530402 35.174289 0.5m x 0.5m 0.25 1.564 

 

0.101 4.040 0.404 

Mean     1.768 0.103 4.133 0.413 

Mean = 0.413kg/m
2
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Table 7.2: Observed Biomass, Olimisigioi, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

     Latitudes           Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A  -1.503840 
 

35.120073 0.5m x 0.5m 0.25 0.125 

 

0.090 3.600 0.360 

B      -1.503788 35.120070 0.5m x 0.5m 0.25 0.175 

 

0.092 3.680 0.368 

C -1.503828 35.120088 0.5m x 0.5m 0.25 0.186 

 

0.085 3.400 0.340 

D -1.503898 35.120072 0.5m x 0.5m 0.25 0.132 

 

0.089 3.560 0.356 

E -1.503917 35.120068 0.5m x 0.5m 0.25 0.124 

 

0.098 3.920 0.392 

F -1.503901 35.120040 0.5m x 0.5m 0.25 0.146 

 

0.094 3.760 0.376 

Mean     0.148 0.091 3.650 0.365 

Mean 0.365kg/m
2 
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Table 7.3: Observed Biomass, Olimisigioi, 05/05/2018_Wet season
 

Sample 

ID 

Coordinates 

 

 

Latitudes                Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.503840 
 

35.120073 0.5m x 0.5m 0.25 1.625 

 

0.101 4.040 0.404 

B -1.503788 35.120070 0.5m x 0.5m 0.25 1.675 

 

0.103 4.120 0.412 

C -1.503828 35.120088 0.5m x 0.5m 0.25 1.486 

 

0.098 3.920 0.392 

D -1.503898 35.120072 0.5m x 0.5m 0.25 1.932 

 

0.104 4.160 0.416 

E -1.503917 35.120068 0.5m x 0.5m 0.25 1.324 

 

0.093 3.720 0.372 

F -1.503901 35.120040 0.5m x 0.5m 0.25 1.346 

 

0.097 3.880 0.388 

Mean     1.565 0.099 3.970 0.397 

Mean biomass = 0.397kg/m
2
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Table 7.4: Observed Biomass, Talek, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

  Latitudes            Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A - 1.461173 
 

35.182764 0.5m x 0.5m 0.25 0.226 

 

0.096 

 

3.840 0.384 

B -.461188 35.182770 0.5m x 0.5m 0.25 0.202 

 

0.101 4.040 0.404 

C -1.461136 35.182778 0.5m x 0.5m 0.25 0.104 

 

0.084 

 

3.360 0.336 

D -1.461199 35.182772 0.5m x 0.5m 0.25 0.152 

 

0.077 

 

3.080 0.308 

E -1.461127 35.182768 0.5m x 0.5m 0.25 0.101 

 

0.086 

 

3.440 0.344 

F -1.461104 35.182746 0.5m x 0.5m 0.25 0.104 

 

0.091 3.640 0.364 

Mean     0.148 0.089 3.570 0.357 

Mean 0.357kg/m
2
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Table 7.5: Observed Biomass, Talek, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

Latitudes             Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass 

in Kg/m
2
 

Standard 

Error 

A - 1.461173 
 

35.182764 0.5m x 0.5m 0.25 1.826 

 

0.105 

 

4.200 0.420 ± 0.027 

B -1.461188 35.182770 0.5m x 0.5m 0.25 1.502 

 

0.107 4.280 0.428 ± 0.047 

C -1.461136 35.182778 0.5m x 0.5m 0.25 1.804 

 

0.103 

 

4.120 0.412 ± 0.021 

D -1.461199 35.182772 0.5m x 0.5m 0.25 1.952 

 

0.097 

 

3.880 0.388 ± 0.049 

E -1.461127 35.182768 0.5m x 0.5m 0.25 2.701 

 

0.102 

 

4.080 0.408 ± 0.013 

F -1.461104 35.182746 0.5m x 0.5m 0.25 1.804 

 

0.104 4.160 0.416 ± 0.007 

Mean     1.932 0.103 4.12 0.412  

Mean 0.412kg/m
2
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Table 7.6: Observed Biomass, Upstream, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

Latitudes                Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.529190 
 

35.238243 0.5m x 0.5m 0.25 0.126 

 

0.093 

 

3.720 0.372 

B  -1.529189 35.238274 0.5m x 0.5m 0.25 0.102 

 

0.086 3.440 0.344 

C -1.529128 35.238288 0.5m x 0.5m 0.25 0.104 

 

0.074 

 

2.960 0.296 

D -1.529098 35.238270 0.5m x 0.5m 0.25 0.152 

 

0.089 

 

3.560 0.356 

E -1.529217 35.238268 0.5m x 0.5m 0.25 0.201 

 

0.094 

 

3.760 0.376 

F -1.529106 35.238149 0.5m x 0.5m 0.25 0.204 

 

0.095 3.800 0.380 

Mean     0.148 0.089 3.54 0.354 

Mean 0.354kg/m
2
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Table 7.7: Observed Biomass, Upstream, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

Latitudes                 Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.529196 
 

35.238287 0.5m x 0.5m 0.25 1.826 

 

0.106 

 

4.240 0.424 

B -1.529218 35.238245 0.5m x 0.5m 0.25 1.502 

 

0.097 3.880 0.388 

C -1.529108 35.238268 0.5m x 0.5m 0.25 1.804 

 

0.104 

 

4.160 0.416 

D -1.529107 35.238272 0.5m x 0.5m 0.25 1.952 

 

0.109 

 

4.360 0.436 

E -1.529199 35.238270 0.5m x 0.5m 0.25 2.701 

 

0.114 

 

4.560 0.456 

F -1.529106 35.238159 0.5m x 0.5m 0.25 1.804 

 

0.105 4.200 0.420 

Mean     1.932 0.106 4.23 0.423 

Mean 0.423kg/m
2
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Table 7.8: Observed Biomass, V-section, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

   Latitudes           Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.462422 
 

35.106108 0.5m x 0.5m 0.25 0.186 

 

0.088 

 

3.520 0.352 

B -1.462498 35.106175 0.5m x 0.5m 0.25 0.193 

 

0.091 3.640 0.364 

C -1.462448 35.106184 0.5m x 0.5m 0.25 0.274 

 

0.098 

 

3.920 0.392 

D -1.462368 35.106172 0.5m x 0.5m 0.25 0.192 

 

0.087 

 

3.480 0.348 

E -1.462457 35.106168 0.5m x 0.5m 0.25 0.102 

 

0.079 

 

3.160 0.316 

F -1.462470 35.106149 0.5m x 0.5m 0.25 0.143 

 

0.089 3.560 0.356 

Mean     0.182 0.089 3.55 0.355 

Mean 0.355kg/m
2
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Table 7.9: Observed Biomass, V-section, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

  Latitudes               Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.462422 
 

35.106108 0.5m x 0.5m 0.25 1.886 

 

0.103 

 

4.120 0.412 

B -1.462498 35.106175 0.5m x 0.5m 0.25 1.693 

 

0.106 4.240 0.424 

C -1.462448 35.106184 0.5m x 0.5m 0.25 1.974 

 

0.108 

 

4.320 0.432 

D -1.462368 35.106172 0.5m x 0.5m 0.25 1.892 

 

0.102 

 

4.080 0.408 

E -1.462457 35.106168 0.5m x 0.5m 0.25 1.902 

 

0.098 

 

3.920 0.392 

F -1.462470 35.106149 0.5m x 0.5m 0.25 1.843 

 

0.100 4.000 0.400 

Mean     1.865 0.103 4.11 0.411 

Mean 0.411kg/m
2
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 Table 7.91: Observed Biomass, Nice-Bridge, 12/12/2017_Dry season 

Sample 

ID 

Coordinates 

 

 

 

Latitudes             Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.495192 
 

35.149133 0.5m x 0.5m 0.25 0.136 

 

0.092 

 

3.680 0.368 

B  -1.495198 35.149170 0.5m x 0.5m 0.25 0.189 

 

0.094 3.760 0.376 

C -1.495096 35.149188 0.5m x 0.5m 0.25 0.184 

 

0.089 

 

3.560 0.356 

D -1.495292 35.143170 0.5m x 0.5m 0.25 0.174 

 

0.090 

 

3.600 0.360 

E -1.493317 35.149268 0.5m x 0.5m 0.25 0.198 

 

0.088 

 

3.520 0.352 

F -1.493406 35.149240 0.5m x 0.5m 0.25 0.228 

 

0.096 3.840 0.384 

Average     0.185 0.092 3.600 0.360 

Mean biomass = 0.366kg/m
2
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Table 7.92: Observed Biomass, Nice-Bridge, 05/05/2018_Wet season 

Sample 

ID 

Coordinates 

 

 

    Latitudes            Longitudes 

Quadrat 

Area size 

(m) 

Area in m
2
 Wet wgt 

(Kg) 

Dry wgt 

(Kg) 

Projected 

biomass in 

tons/hac 

Biomass in 

Kg/m
2
 

A -1.495192 
 

35.149133 0.5m x 0.5m 0.25 1.636 

 

0.101 

 

4.040 0.404 

B -1.495198 35.149170 0.5m x 0.5m 0.25 1.788 

 

0.104 4.160 0.416 

C -1.495096 35.149188 0.5m x 0.5m 0.25 1.784 

 

0.103 

 

4.120 0.412 

D -1.495292 35.143170 0.5m x 0.5m 0.25 1.874 

 

0.105 

 

4.200 0.420 

E -1.493317 35.149268 0.5m x 0.5m 0.25 1.798 

 

0.102 

 

4.080 0.408 

F -1.493406 35.149240 0.5m x 0.5m 0.25 1.928 

 

0.106 4.240 0.424 

Mean     1.801 0.104 4.140 0.414 

Mean biomass = 0.414kg/m
2 
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Appendix B.12: Evaluation of APSIM Model performance over dry and wet season 

Quadrat 1-10 

(Averaged Standing 

Grass Biomass) 

(tons/ha) – Dry 

Season 

M
ea

su
re

d
 (

o
) 

S
im

u
la

te
d

 (
s)

 

(s
-o

) 

(s
-o

)2
 

(s
-m

ea
n

 o
) 

(s
-m

ea
n

 o
)2

 

(o
-m

ea
n

 o
) 

(o
-m

ea
n

 o
)2

 

(s
-m

ea
n

 s
) 

(s
-m

ea
n

 s
)2

 

(o
-m

ea
n

 o
) 

(s
-m

ea
n

 

s)
 

Mara Main 3.28 3.39 0.11 0.0121 -0.119 0.0142 -0.229 0.052 -0.206 0.0424 -0.023 

Kissinger 3.66 3.70 0.04 0.0016 0.191 0.0365 0.151 0.023 0.104 0.0108 0.047 

Ashnil 3.71 3.80 0.09 0.0081 0.291 0.0847 0.201 0.040 0.204 0.0416 -0.003 

Mara Bridge 3.89 3.92 0.03 0.0009 0.411 0.1689 0.381 0.145 0.324 0.1050 0.057 

Helicopter 3.57 3.67 0.10 0.0100 0.161 0.0259 0.061 0.004 0.074 0.0055 -0.013 

Olimisiogioi 3.60 3.78 0.18 0.0324 0.271 0.0734 0.091 0.008 0.184 0.0339 -0.093 

Talek 3.55 3.57 0.02 0.0004 0.061 0.0037 0.041 0.002 -0.026 0.0007 0.067 

Upstream 3.54 3.76 0.22 0.0484 0.251 0.0630 0.031 0.001 0.164 0.0269 -0.133 

V-section 3.65 3.69 0.04 0.0016 0.181 0.0328 0.141 0.020 0.094 0.0088 0.047 

Nicegridge 2.64 2.68 0.04 0.0016 -0.829 0.6872 -0.869 0.755 -0.916 0.8391 0.047 

Summation 35.09 35.96 0.87 0.1171 0.870 1.1903 0.000 1.050 0.000 1.1146 0.000 

n 10           

Mean  o 3.509    NSE  r RMSE R
2
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Mean s  3.596  

O
p

ti
m

u
m

 

0 1 1 1    

)(

100

omean
 

2.850 

 
  

S
u

m
m

a
ti

o
n

 

0.889 0.000 0.012 0.889    

 

 

Quadrat 1-10 

(Averaged Standing 

Grass Biomass) 

(tons/ha) – Wet  

Season 

M
ea

su
re

d
 (

o
) 

S
im

u
la

te
d

 (
s)

 

(s-o) (s-o)
2
 

(s
-m

ea
n

 o
) 

(s
-m

ea
n

 o
)2

 

(o
-m

ea
n

 o
) 

(s
-m

ea
n

 s
) 

(o
-m

ea
n

 o
)2

 

(s
-m

ea
n

 s
)2

 

(o
-m

ea
n

 o
) 

(s
-m

ea
n

 

s)
 

Mara Main 6.54 6.78 0.24 0.059 0.32 5.401 2.08 4.329 2.33 5.420 4.8438 

Kissinger 5.89 5.75 -0.14 0.019 0.29 1.662 1.43 2.037 1.29 1.672 1.8455 

Ashnil 4.87 4.25 -0.13 0.016 -0.21 0.046 -0.09 0.007 -0.21 0.044 0.0181 

Mara Bridge 3.08 4.13 0.00 0.000 -0.33 0.106 -0.33 0.106 -0.32 0.104 0.1050 

Helicopter 4.13 4.13 0.01 0.000 -0.33 0.106 -0.34 0.115 -0.32 0.103 0.1092 

Olimisiogioi 3.97 4.15 0.01 0.000 -0.31 0.098 -0.32 0.102 -0.31 0.095 0.0986 

Talek 4.12 4.15 0.04 0.001 -0.31 0.095 -0.35 0.120 -0.30 0.092 0.1051 
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Upstream 4.23 4.28 0.04 0.002 -0.18 0.033 -0.23 0.051 -0.18 0.031 0.0400 

V-section 4.11 3.92 -0.06 0.003 -0.54 0.294 -0.49 0.236 -0.54 0.290 0.2617 

Nicebridge 4.14 3.02 -0.06 0.004 -1.44 2.082 -1.38 1.903 -1.44 2.071 1.9849 

Summation 44.59 44.55 -0.04 0.106 -0.04 9.923 0.00 9.007 0.00 9.922 9.4118 

n 10           

Mean  o 4.46    NSE r RMSE R
2
    

Mean s  4.46  

O
p

ti
m

u
m

 

0 1 1 1    

)(

100

omean
 22.42   

S
u

m
m

a
ti

o
n

 

0.988 0 0.1029 0.988    
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Appendix B.13: Naivasha Cropland Monthly Rainfall at Delamere Manera Farm 

Year/Month Jan Feb Mar April May June July Aug Sep Oct Nov Dec Mean 

Annual 

rainfall 

2010 127.5 80 237 148.5 213 59 0 68 66 81.3 61.5 12 1154 

2011 31.5 36.5 122 85.5 93.5 137 47 142 39 92.8 107.5 6 980 

2012 5 18 7 160.5 293 37.5 59 48.5 94 86.5 59 138 1006 

2013 30.5 6 62 460 16 77 24 0 45 41 146.5 122.6 1031 

2014 26 113 103 18.5 17 23 80.5 37.5 53 17 63 83.5 635 

2015 0 16 0 241 87 102 56 47 64 36 173 134.5 957 

2016 60 25 35 80 176 82 69 23 114 23 86 0 773 

2017 0 15 10 84.5 106.5 8 63 134.5 78.5 112.5 88 0 701 

2018 37 0 157 261.5 298.5 88 40.5 29 2.5 62 56 85.5 1118 

2019 10 37 21 66.5 78.5 150 65 0 20.5 86.5 165 172 872 

Mean 33 35 75 101 138 76 50 53 58 64 101 79  

 

Appendix B.14:  Major land cover classes of Naivasha Cropland 

Land Cover Class (Area Covered (Km
2
) and % cover 

Period 2017 2018 2019 

Arable land 987.89 (65%) 1006.317 (63%) 1257.896 (63%) 

Non-arable land 423.76 477.84 597.304 
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Land under water 84 84 105 

Gazetted Forest 1.2 1.6 2 

Urban Area 20.3 24.8 31 

Total Area (Km
2
) 1517.15 1594.557 1993.2 

 

Appendix B.15: Naivasha Sub-County Agro-Ecological Zones based on land potential by wards using Area Sampling 

Land Potential 

       Wards 

Maaimahiu Olkaria Lakeview Naivasha 

East 

Viwanda

ni 

Biashara Maiella Hells 

Gate 

Total 

Arable land 

(km
2
) 

222.64 221.6 16.6 106.4 80.22 264 265.236 81.2 1257.8

96 

Non-arable land 

(km
2
) 

360.36 3 16.6 10 24.78 10 162.564 10 597.30

4 

Land under 

water (km
2
) 

0 105 0 0 0 0 0 0 105 

Gazetted forest 

area (km
2
) 

2 0 0 0 0 0 0 0 2 

Urban area 

(km
2
) 

6 2 6 4 4 2 1 6 31 

Altitude (m.a.s.l) 1520-2660 1900-

2000 

1900-2100 2000-

2700 

1900-

2000 

2000-2300 1900-

2700 

1900-

2200 

- 

Rainfall range 

(mm p.a) 

- 600-

1000mm 

750-1000mm 750-

1000mm 

750-

1000mm 

600-

1000mm 

800-

1055mm 

750-

1000mm 

- 

Temperature 

range oC 

12-25 15-25 15-25 12-25 15-25 12-25 12-25 15-25 - 

High Potential 

(Ha) 

0 0 0 80.4 0 64 50 0 194.40 
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Medium 

potential (Ha) 

166 160 16.6 26 80.22 150 177 60.2 836.02 

Low Potential 

(Ha) 

56 162.2 0 0 0 50 38 21 327.2 

Main Agro-

Ecological zones 

(specify) 

UH3,LH3,L

H4,LH5,UM

4,UM5,UM6 

LH4, 

LH5, 

UM5, 

UM6 

LH4,UM5, 

UM6 

LH3 LH4, 

UM5, 

UM6 

UH2, 

UH3, LH3, 

LH4, LH5, 

UM6 

UH2, 

UH3, 

LH4, 

LH5, 

UM5, 

UM6 

LH4, 

LH5, 

UM5, 

UM6 

- 

Soil types Sandy Loam Sandy 

loam 

Sandy Loam Sandy 

Loam 

Sandy 

Loam 

Sandy 

Loam 

Sandy 

Loam 

Sandy 

Loam 

- 

Livelihoods Crop 

farming, 

livestock 

keeping, 

quarrying, 

business 

Crop 

farming, 

livestock 

keeping, 

quarrying, 

business 

Crop 

farming, 

livestock 

keeping, 

quarrying, 

business - 

Crop 

farming, 

livestock 

keeping, 

quarrying, 

business 

Crop 

farming, 

livestock 

keeping, 

quarrying, 

business 

Crop 

farming, 

livestock 

keeping, 

quarrying 

business 

Crop 

farming, 

business 

employ

ment 

Crop 

farming, 

livestock 

keeping, 

quarryin,

business 

- 
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Appendix B.16: Chemical Properties of selected farms in Naivasha Sub-county 

Kijabe/Ndabibi Farm 

Fertility Results Units Value Class 

Soil pH  6.65 Near neutral 

*Total Nitrogen % % 0.15 Low 

*Total organic carbon % % 1.42 Moderate 

Phosphorous ppm 50 Adequate 

Potassium ppm 3.00 High 

Calcium ppm 4.00 Adequate 

Magnesium ppm 3.45 High 

Manganese % 0.65 Adequate 

Copper Ppm 1.70 Adequate 

Iron Ppm 155 Adequate 

Zinc Ppm 11.8 Adequate 

Sodium % 0.80 Adequate 
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Delamere/Minera Farm 

Parameter Unit Result Guide Low Guide High Symbol Current Last  three 

analysis 

Method 

pH(H2O)  8.49 6.50 7.50 pH 8.49 7.3 Potentiometric 

*EC(Salts) mS/cm 231 - <800 EC(S) 231 503 Potentiometric 

*Phosphorus 

(Oslen) 

ppm 30.4 20.0 50.0 P(O) 30.4 - Colorimetric 

*Potassium ppm 1450 253 1260 K 1450 1560 Spectroscopy 

Calcium Ppm 3870 3890 4860 Ca 1870 3410 Spectroscopy 

Magnesium Ppm 430 389 778 Mg 430 402 Spectroscopy 

Sulphur ppm 60.5 10.0 50.0 S 60.5 4.65 Spectroscopy 

Sodium ppm 1110 - <559 Na 1110 172 Spectroscopy 

Iron ppm 159 60.0 350 Fe 159 146 Spectroscopy 

Manganese ppm 250 20.0 200 Mn 250 95.1 Spectroscopy 

Boron ppm 1.29 0.80 2.00 B 1.29 1.57 Spectroscopy 

Copper ppm 1.54 1.50 10.0 Cu 1.54 1.1 Spectroscopy 

Zinc ppm 10.9 2.00 20.0 Zn 10.9 10 Spectroscopy 

*C.E.C Meq/100g 32.4 15.0 30.0  32.4 26.2 Calculated  

*Total Nitrogen % 0.20 0.20 0.50 N 0.20 - Colorimetric 

*Organic 

Matter 

% 3.59 3.00 8.00 OM 3.59 - Colorimetric 
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*C/N ratio  10.4 10.0 25.0 CN 10.4 - - 

*PERCENTAGES AND RATIOS 

Calcium % 59.7 60 75 Ca% 59.7 64.99  

Potassium  % 11.5 2 10 K% 11.5 15.29  

Magnesium % 11.1 10 20 Mg% 11.1 12.77  

Sodium (ESP) % 14.9 0 7.5 Na% 14.9 2.85  

Other bases % 2.91 3 10 OB% 2.91 4.1  

Hydrogen  % 0.00 10 15 H% 0.00 0  

Total 100  

Ca:Mg ratio % 5.40 4 7 CaMg 5.40 5.09  

Appendix B.17: General trends of Pasture and Fodder Conservation in Naivasha between 2013 and 2019 

Year Silage in 

Tonnes 

Hay Bales Standing Hay 

(Ha) 

Homemade 

Ratio (Tonnes) 

Beans/Peas 

Husks 

Maize stovers 

(tonnes) 

Wheat stovers 

(bales) 

2013 420 5,120 9,720 32,200 0 340 2,900 

2014 560 5,470 9,800 34,000 0 380 3,400 

2015 580 5,800 10,000 35,000 0 400 3,800 

2016 1,280 130,250 4,500 42,000 280 9,120 56,000 

2017 880 90,150 3,000 32,000 170 8,170 60,000 

2018 2,640 270,450 2,500 30,000 1,240 15,140 120,000 

2019 2,746 289,652 2,700 31,200 1,352 16,503 129,600 
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Appendix B.18: General wheat crop production and acreage in Naivasha Sub County 

WARD Acreage 

(Ha) 

Production 

(Tons) 

Area in m^2 Production in 

Kg 

Production 

in Kg/m^2 

Maiella 2220 

(99.5%) 

6030 22,200,000 6,030,000 0.272 

Maaimahiu 10 

(0.448%) 

0 10,000,000 0 0 

Biashara 1 (0.045%) 0.001 10,000 1 0.0001 

Total 2231 6,030 22,310,000 6,030,001 0.2721 

 

Appendix B.19: Observed and Predicted wheat production in Naivasha Crop 

Observed annual wheat production - Kijabe/Ndabibi farm 

Year Biomass 

(kg/ha) 

Biomass 

(ton/ha) 

Yield (kg/ha) Yield (ton/ha) 

2017 13177.0 13.1770 4630.0 4.6300 

2018 12805.3 12.8053 4887.7 4.8877 

2019 14758.1 14.7581 5800.6 5.8006 

Mean 13580.1 13.5801 5106.1 5.1061 

Observed annual wheat production - Delamere Minera farm 

Year Biomass 

(kg/ha) 

Biomass 

(ton/ha) 

Yield (kg/ha) Yield 

(ton/ha) 

2017 12889.5 12.8895 49301 4.9301 

2018 14409.9 14.4099 55844 5.5844 

2019 15697.0 15.6970 55523 5.5523 

Mean 14335.5 14.3355 53556 5.3556 

Observed annual wheat harvest - Nunjoro farm 

Year Biomass (kg/ha) Biomass 

(ton/ha) 

Yield (kg/ha) Yield 

(ton/ha) 

2017 11941.5 11.9415 3471.2 3.4712 

2018 12450.0 12.4500 4729.4 4.7294 

2019 13501.4 13.5014 4419.6 4.4196 

Mean 12631.0 12.6310 4206.7 4.2067 
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Annual wheat production - Engineer/Mzee Paul’s farm 

Year Biomass 

(kg/ha) 

Biomass 

(ton/ha) 

Yield (kg/ha) Yield (ton/ha) 

2017 9545.8 9.5458 3583.2 3.5832 

2018 12452.3 12.4523 3858.1 3.8581 

2019 13248.3 13.2483 4023.3 4.0233 

Mean 11748.8 11.7488 3821.5 3.8215 

 

Simulation results of wheat biomass and yield 

 

Predicted annual wheat harvest production - Kijabe/Ndabibi farm 

Year Biomass 

(kg/ha) 

Yield 

(kg/ha) 

Grain 

Protein (%) 

Grain size 

(g) 

Extractable soil 

water (mm) 

2017 13445.1 5040.1 16.417 0.041 326.700 

2018 13575.9 4329.3 10.896 0.029 294.760 

2019 15023.0 5489.4 12.505 0.032 334.322 

Mean 14014.7 4952.9 13.273 0.034 318.594 

Predicted annual wheat harvest production - Delamere Minera farm 

Year Biomass 

(kg/ha) 

Yield 

(kg/ha) 

Grain 

Protein (%) 

Grain size 

(g) 

Extractable 

soil water 

(mm) 

2017 13375.5 5183.3 12.700 0.041 388.513 

2018 14813.4 5861.1 13.419 0.036 293.308 

2019 16298.0 5854.6 16.419 0.041 357.570 

Mean 14.8290 5633.0 14.179 0.039 346.464 

Predicted annual wheat harvest production - Engineer/Mzee Paul’s farm 

Year Biomass 

(kg/ha) 

Yield 

(kg/ha) 

Grain 

Protein (%) 

Grain size 

(g) 

Extractable 

soil water 

(mm) 

2017 12678.1 4114.5 11.138 0.028 294.913 

2018 12899.5 4930.1 12.563 0.033 339.042 

2019 12907.9 4938.6 16.020 0.033 268.325 

Mean 12828.5 4661.1 13.240 0.031 300.760 
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Predicted annual wheat harvest - Nunjoro farm 

Year Biomass 

(kg/ha) 

Yield 

(kg/ha) 

Grain Protein 

(%) 

Grain size 

(g) 

Extractable soil water 

(mm) 

2017 10728.2 4073.9 15.632 0.041 514.277 

2018 12805.3 4887.7 16.078 0.041 286.493 

2019 13501.4 4419.6 11.127 0.030 294.913 

Mean 12345.0 4460.4 14.279 0.037 365.228 
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Appendix B.20: Evaluation of APSIM Model Wheat Crop Performance - Aboveground Biomass (tons/ha) – Growing Season 2017, 2018 and 

2019 
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Wheat Grain Yield) (tons/ha) 2017, 2018 and 2019 
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Wheat Aboveground Biomass (tons/ha) – Growing Season 2017, 2018 and 2019 
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Wheat Grain Yield) (tons/ha) - Annual Harvest 2017, 2018 and 2019 
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Wheat Aboveground Biomass) (tons/ha) – Growing Season 2017, 2018 and 2019 
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Wheat Grain Yield) (tons/ha) 2017, 2018 and 2019 
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Wheat Aboveground Biomass) (tons/ha) – Growing Season 2017, 2018 and 2019 
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Quadrat  (Wheat Grain Yield) 
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Appendix B.21: Land Cover Classification Segmentation in Area size 

        L2_KEN_LCC_09_Clip.tif.vat, 9/24/2020, Page 1 

OID Value Count  AREA (Km
2
) 

0 20 30162 23.818436 

1 30 59199 46.748478 

2 41 15599 12.318274 

3 42 81 0.063964 

4 112 254 0.20058 

5 114 153 0.120822 

6 116 1037 0.818902 

7 122 1 0.00079 

8 124 84 0.066333 

9 126 20063 15.843422 

  

 L2_KEN_LCC_11_Clip1.tif.vat, 9/24/2020, Page 1 

OID Value Count  AREA (Km
2
) 

0 20 30162 23.818436 

1 30 59199 46.748478 

2 41 15599 12.318274 

3 42 81 0.063964 

4 112 254 0.20058 

5 114 153 0.120822 

6 116 1037 0.818902 

7 122 1 0.00079 

8 124 84 0.066333 

9 126 20063 15.843422 
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L2_LCC_15_clipped.tif.vat, 9/23/2020, Page 1 

OID      Value Count AREA (Km
2
) 

0 20 22010 7.93771 

1 30 7514 2.709857 

2 41 162398 58.567389 

3 42 3409 1.229425 

4 50 1527 0.550699 

5 60 1 0.000361 

6 80 11599 4.183076 

7 90 753 p 

8 112 26278 9.476926 

9 114 1079 0.389132 

10 116 8224 2.965912 

11 122 32 0.011541 

12 124 311 0.112159 

13 126 32149 11.59425 

 

L2_KEN_LCC_17_Clip.tif.vat, 9/24/2020, Page 1 

OID Value Count AREA (Km
2
) 

0 20 30162 23.818436 

1 30 59199 46.748478 

2 41 10364 8.184281 

3 42 5316 4.197958 

4 112 254 0.20058 

5 114 153 0.120822 

6 116 1037 0.818902 

7 122 1 0.00079 

8 124 84 0.066333 

9 126 20063 15.843422 
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L2_KEN_LCC_19_Clip.tif.vat, 9/24/2020, Page 1 

         OID      Value    Count AREA (Km
2
) 

0 20 30162 23.818436 

1 30 59199 46.748478 

2 41 10364 8.184281 

3 42 5316 4.197958 

4 112 254 0.20058 

5 114 153 0.120822 

6 116 1037 0.818902 

7 122 1 0.00079 

8 124 84 0.066333 

9 126 20063 15.843422 
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Appendix B.21: Naivasha Cropland Land use Land Covers Segmentation of (a) Kijabe/Ndabibi farm (b) Kenya Wildlife Service Training 

Institute (c) Nunjoro farm (d) Delamere/Minera farm 

 

                                    (a)                                                                                                                              (b) 

 

                                   (c)                                                                                                                            (d) 
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Appendices C: Graphs 

Appendix C.1: Monthly Trend of Precipitation and Temperature of Maasai Mara National Reserve Sites 

                                             Mara Main Station                                                                               Kissinger 

 

                                                   Ashnil station                                                                           Mara Bridge 
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                                              Helicopter                                                                                       Olimisiogioi 

 

 

                                                  Talek                                                                                               Upstream 
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                                                V-section                                                                                               Nice Bridge 
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Appendix C.2: Soil Water Content against Hydraulic Properties 

                                                  At 5cm                                                                                         At 10cm 

 

                                                           At 20cm                                                                                     At 40cm 
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                                                                         At 80cm 

 

Appendix C.3: Naivasha Climate Variables by Bowen‟s Ratio 

Half-Day (12 hours) parameters dataset_2017_2019 

  

Daily – Time Step Parameters Dataset_2017_2019 
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Appendices D: Research Permit 

Appendix D.1: NACOSTI Research Permit 
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Appendices E: List of Publications 
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