ISOLATION AND CHARACTERIZATION OF SOIL BACTERIA CAPABLE OF DEGRADING METRIBUZIN IN SUGARCANE FARMS OF WESTERN KENYA

KARIUKI CATHERINE WANJIRU

A Thesis Submitted to Graduate School in Partial Fulfilment for the Requirements of Master of Science Degree in Environmental Science of Egerton University

EGERTON UNIVERSITY

November, 2016
DECLARATION AND RECOMMENDATION

DECLARATION

I hereby declare that this is my original work and has not been presented in this or any university for the award of a degree

Signature: ------------------------------------- Date: -------------------------------------

Kariuki Catherine Wanjiru
NM12/3091/11

RECOMMENDATION

This thesis has been submitted for examination with our approval as supervisors.

Signature: ------------------------------------- Date: -------------------------------------

Dr. Anastasia W. Muia (PhD)
Biological Sciences department
Egerton University

Signature: ------------------------------------- Date: -------------------------------------

Dr. Wilkister N. Moturi (PhD).
Environmental Science Department
Egerton University

Signature: ------------------------------------- Date: -------------------------------------

Dr. Anastasia N. Ngigi (PhD).
Chemistry Department
Multimedia University of Kenya
COPYRIGHT
©2016 Catherine Wanjiru Kariuki

No part of this thesis may be produced, stored in any retrievable system or transmitted in any
form or means: electronic, mechanical, photocopying, recording or otherwise, without prior
written permission of the author or Egerton University
DEDICATION

This thesis is dedicated to my husband Mac, my daughter Ray and son Ian.
ACKNOWLEDGEMENT
I would like to thank God for giving me the strength and health to pursue this study. I would like to express my sincere gratitude to my supervisors Dr. A. W. Muia, Dr. Wilkister Moturi and Dr. Anastasia Ngigi for professional guidance. I highly regard Mr Francis Oringe, the Agronomist of Nzoia sugar Company for giving me assistance in soil sampling. Many thanks go to Mr Stanely Babikha, the Nucleus Estate Manager of Nzoia Sugar Company, for facilitating sampling in the estates and Mr Aggrey Khaemba, the supervisor in-charge of spraying for giving us information on herbicides history and helping in identification of farms during sampling. Regards to Mr. Caleb Luvonga and entire Biochemistry department of Kenya Bureau of Standards for the technical assistance in HPLC analysis. Mr Cyrus Kimani of KALRO Njoro together with Dr. Miriam Charimbu of Egerton University (CHS Dept) for assistance in molecular analysis of isolates. I am also thankful for Egerton University for giving me the opportunity to pursue my study. I thank my family for love, support and the encouragement they provided to me during the time of my study.
ABSTRACT

Nzoia River Drainage Basin is a major sugar production region in Kenya. Various pesticides are applied in this area to control weeds and boost sugar productivity. However, use of herbicides for weed control leads to increased chemical loads in the environment whose effects could be disastrous to the biotic component. The use of pesticide adapted microorganisms in the degradation and detoxification of many toxic xenobiotics, especially pesticides, is an efficient tool for the decontamination of polluted environments. The main objective of this work was to isolate and identify soil bacteria capable of degrading metribuzin, a commonly used weed killer in sugarcane farms. Five farms with history of metribuzin application were purposively identified for soil sampling. Random soil sampling was used to obtain samples from a depth of 0 – 10cm in November 2013. A composite sample was used in isolation of the bacteria. Influence of temperature, pH, nitrogen and phosphorous on growth of the isolated bacteria was also tested. Experimental design was used to carry out the experiments in the laboratory. Mineral salts media containing metribuzin as the sole carbon source was used to culture and selectively isolate metribuzin degrading bacteria. Growth of the bacteria in the medium measured as absorbance at OD$_{600nm}$ for various time intervals was an indication of tolerance to the herbicide and ability to utilize metribuzin as a carbon source. HPLC method was used to determine ability of the bacteria to degrade metribuzin and assess the metabolites after the 21 day incubation period. Molecular analysis was carried out by DNA extraction from each isolate and subjected to PCR using 16S primers. Sequences and blast results were compared to relevant data bases. ANOVA and separation of means using LSD at $p \leq 0.05$ was used to analyse data. Seven different bacteria isolates with metribuzin degrading potential were coded NZ453A, NZ454B, NZ453C, NZ543A, NZ543B, NZ8070 and NZ1110. They were subjected to morphological, cultural, biochemical and molecular characterization. Results also revealed that temperature, pH, nitrogen and phosphorous had different influence on the specific bacteria but generally, $35^\circ C$, pH 9, nitrogen and phosphorous concentrations of 7.5g/L recorded highest growth on most of the isolates. The isolates degraded more than 93% of metribuzin. The seven isolated bacteria were identified as Planococcus sp., Burkholderia cepacia, Pseudomonas sp., Bacillus sp., Arthrobacter sp., and Staphylococcus sp., all of which have been previously associated with degradation of recalcitrant compounds in the environment. This indicates that Nzoia sugarcane farms consist of different metribuzin degrading bacteria, which can grow in
different physical chemical conditions. They can be multiplied and further developed for bioremediation or bioaugmentation of metribuzin contaminated sites.

TABLE OF CONTENTS

DECLARATION AND RECOMMENDATION ..2
COPYRIGHT ..3
DEDICATION ...4
ACKNOWLEDGEMENT ..5
ABSTRACT ..6
TABLE OF CONTENTS ..7
LIST OF TABLES ...10
LIST OF FIGURES ..11
LIST OF PLATES ...12
LIST OF ABBREVIATIONS AND ACRONYMS ..13
CHAPTER ONE ..1
INTRODUCTION ..1
 1.1 Background information ..1
 1.2 Statement of the problem ...2
 1.3 Objectives ..2
 1.3.1 General objective ...2
 1.3.2 Specific objectives ...3
 1.4 Hypotheses ...3
 1.5 Justification ..3
 1.6 Scope of the study ...4
 1.7 Assumptions ..4
 1.8 Definition of terms ..4
CHAPTER TWO ..6
LITERATURE REVIEW ..6
2.1 Importance of sugarcane farming ...6
2.2 Economics of sugar industry in Kenya ..6
2.3 Sugarcane production ...6
2.4 Metribuzin as a pesticide ..7
2.5 Physical and chemical properties of metribuzin ..7
2.6 Metribuzin in the environment ..8
2.7 Effects of metribuzin on health ..9
2.8 Microbial degradation of pesticides and growth conditions9
2.9 Fate of metribuzin degradation ..11

CHAPTER THREE ...13
MATERIALS AND METHODS ..13
3.1 Study area ...13
3.2 Soil samples collection and preparation ...14
3.3 Measurement of soil pH ..15
3.4 Determination of bacteria population ...15
3.5 Isolation of metribuzin degrading bacteria ...15
 3.5.1 Morphological identification of metribuzin degraders16
3.6 Determination of growth conditions of the isolates16
 3.6.1 Temperature ..16
 3.6.2. Determination of optimal pH for growth of isolates16
 3.6.3 Determination of effect of Nitrogen concentration on growth of isolates ...17
 3.6.4 Determination of effect of Phosphorous concentration on growth of isolates17
3.7 Determination of metribuzin degradation potential of the isolates17
 3.8 Molecular characterization and identification ...18
3.9 Research design ..19

CHAPTER FOUR ..20
RESULTS AND DISCUSSION ...20
4.1. Determination of bacteria population distribution ... 20

4.1.1. Distribution of total viable bacteria counts among the farms 20

4.1.2 Influence of soil physico-chemical parameters on total bacteria population 21

4.1.3. Morphological and biochemical characterization of the bacteria isolates 22

4.1.4 Cultural, cell morphology and Gram stain reactions of the isolates 23

4.1.5 Biochemical tests .. 23

4.2. Influence of temperature, pH, Phosphorous and Nitrogen on Bacteria growth 25

4.2.1 Temperature treatment .. 25

4.2.2 Growth at different pH levels .. 26

4.2.3. Growth of isolates in different nitrogen concentrations 28

4.2.4. Growth in phosphorous concentrations ... 29

4.2.5 Summary of most favourable of the selected growth conditions of the isolates.... 31

4.3 Determination of degradation potential and molecular identities of the bacteria isolates .. 31

4.3.2 Determination of degradation capability of the isolates ... 33

4.3.3 Determination of metabolites formed in metribuzin degradation 34

4.3.4 Molecular Characterization .. 35

4.4 Polymerase chain reaction ... 35

CHAPTER FIVE .. 42

CONCLUSIONS AND RECOMMENDATIONS .. 42

5.1 Conclusions ... 42

5.2 Recommendations ... 43

REFERENCES .. 44
LIST OF TABLES
Table 1 Summary of methods of data analysis ...19
Table 2: Mean bacterial numbers (CFUs, ×10^5 per gram of soil) among the farms20
Table 3: Physico-chemical characteristics of study farm soils21
Table 4. Correlation coefficients (r) of the physico-chemical properties with the total viable bacterial counts (CFUg^-1 soil) in the soils of Nzoia sugar company (n = 5)........22
Table 5: summary of Cultural, cell morphology and Gram stain reactions of the isolates23
Table 6: Biochemical characteristics of metribuzin degrading bacterial isolates from Nzoia Sugar Company farm ..24
Table 7: Difference in growth (OD_600) between isolates at different temperatures using separation of means by LSD ...26
Table 8: Difference in growth (OD_600) between isolates at different pH levels using separation of means by LSD ...27
Table 9: Difference in growth (OD_600) between isolates at different nitrogen concentrations using separation of means by LSD ...29
Table 10: Difference in growth (OD_600) between isolates at different phosphorous concentrations using separation of means by LSD ...30
Table 11: Summarized data showing bacteria isolates and physico-chemical parameters that recorded the highest growth for each isolate ...31
Table 12: Residual metribuzin in mg kg^-1 after degradation by the isolates33
Table 13: Bacteria isolates’ degradation potential calculation ...33
Table 14. Metabolite concentrations recovered after degradation of metribuzin by isolates34
Table 15: Identified metribuzin degrading soil bacteria and their accession numbers40
LIST OF FIGURES

Figure 1: Chemical structure of metribuzin ... 8
Figure 2. Metribuzin and proposed degradation pathways (Huertas-Pérez 2006) 12
Figure 3: Map of study area with designated study farms .. 14
Figure 4: Chart showing percentage distribution of total bacteria counts among farms ... 20
Figure 5: Column Charts showing growth of isolates on different temperatures 26
Figure 6: Column Charts showing growth of isolates at different pH levels in growth media ... 27
Figure 7: Column Charts showing growth of isolates at different nitrogen concentrations on growth medium ... 28
Figure 8: Column Charts showing growth of isolates at different phosphorous concentrations in growth medium .. 30
Figure 9: Line graph showing Growth(OD) trends of the isolates in MSM against time(Days) ... 32
Figure 10. PCR products of 16Sr RNA gene amplification. M: marker (1Kb ladder), 1-7 DNA of isolates and ck is the control ... 35
Figure 11. Phylogenetic tree of Isolate NZ453A .. 37
Figure 12: Phylogenetic tree of isolate NZ453 C ... 37
Figure 13: Phylogenetic tree of isolate NZ435B .. 38
Figure 14: Phylogenetic tree of isolate NZ543A .. 38
Figure 15: Phylogenetic tree of isolate NZ543B .. 39
Figure 16: Phylogenetic tree of isolate NZ8070 .. 39
Figure 17: Phylogenetic tree of isolate NZ1110 .. 40
LIST OF PLATES

Plate 1: Photomicrographs of metribuzin degrading isolates on growth media. 22
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCME</td>
<td>Canadian Council of Ministers of the Environment.</td>
</tr>
<tr>
<td>DA</td>
<td>Desamino</td>
</tr>
<tr>
<td>DADK</td>
<td>Desamino-diketo</td>
</tr>
<tr>
<td>DK</td>
<td>Diketo</td>
</tr>
<tr>
<td>EXTOXNET</td>
<td>Extension Toxicological Network.</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography.</td>
</tr>
<tr>
<td>HSDB</td>
<td>Hazardous Substances DataBank.</td>
</tr>
<tr>
<td>KESREF</td>
<td>Kenya Sugar Research Foundation.</td>
</tr>
<tr>
<td>NRDB</td>
<td>Nzoia River Drainage Basin.</td>
</tr>
<tr>
<td>NSF</td>
<td>Nzoia Sugar Farm</td>
</tr>
<tr>
<td>OMAF</td>
<td>Ontario Ministry of Agriculture and Food</td>
</tr>
<tr>
<td>OMOE</td>
<td>Ontario Ministry of Environment.</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction.</td>
</tr>
<tr>
<td>RTECS</td>
<td>Registry of Toxic Effects of Chemical Substances</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
</tbody>
</table>