GROWTH PERFORMANCE OF MIXED SEX NILE TILAPIA IN CAGE MONOCULTURE AND POLYCLTULTURE WITH AFRICAN CATFISH AND AFRICAN CARP

OMONDI ALFRED GEORGE AJUOGA

A Thesis Submitted to the Graduate School in Partial Fulfillment of the Requirements for the award of a Master of Science Degree in Limnology of Egerton University

EGERTON UNIVERSITY
NOVEMBER, 2016
DECLARATION AND RECOMMENDATION

DECLARATION
This thesis is my original work and has not, wholly or in part, been submitted or presented for examination for award of a degree in any other University

Signature: ___________________________ Date: __________________________
Omondi Alfred George Ajuoga
SM18/3323/12

RECOMMENDATION
This thesis is the candidate’s original work and has been prepared with our guidance and assistance and submitted with our approval as the University Supervisors

Signature: ___________________________ Date: __________________________
Dr. Elick Otachi
Senior Lecturer, Department of Biological Sciences
Egerton University

Signature: ___________________________ Date: __________________________
Dr. Jonathan Munguti
Senior Researcher,
Kenya Marine & Fisheries Research Institute,
National Aquaculture Research Development & Training Centre, Sagana
COPYRIGHT
© 2016 Omondi Alfred George Ajuoga
No part of this thesis may be reproduced, stored in any retrieval system or transmitted in any form, electronic, mechanical, photocopying, recording or otherwise without prior permission of the author or Egerton University.
DEDICATION
To my beloved wife Carolyne, children John Junior, Monica, Mary, Marga and my beloved mum Monica Senior and dad John.

Thank you for being there for me always.

ACKNOWLEDGEMENTS
Firstly, I would like to thank the Lord God Almighty for the grace of life, for financial provision, walking side by side with me always and for providing me with the strength to move on even in the face of adversity and despair. Secondly, I would also like to thank the Department of Biological Sciences, the Faculty of Science and the Graduate school of Egerton University for the support they gave during the production of this work. Thirdly, I would like to most sincerely thank my supervisors, Dr. Elick Otachi and Dr. Jonathan
Munguti for the immense support and advice that they always gave. I would also like to thank the Government of Kenya for granting study leave. Thanks also go to Dr. Paul Orina of NARDTC-Sagana and the Kenya Marine and Fisheries Research Institute (KMFRI)-Sagana fraternity for the material support which they gave during my research work. Last but not least, I would also like to thank Dr. Julius Nzeve of Fisheries Department-Machakos and Mr. Ken Ochieng (Egerton University) for the assistance which they gave me during data analysis.
ABSTRACT

The excessive breeding of mixed sex Nile tilapia (*Oreochromis niloticus*) in ponds often lead to stunted growth. This study hypothesized that cage culture was a potential alternative in solving the problem. Furthermore, it was hypothesized that its growth performance does not significantly vary when polycultured in cages with the African catfish (*Clarias gariepinus* Burchell 1822) and African carp (*Labeo victorianus* Boulenger 1901). An experiment was set up in a completely randomized design (CRD) for four months to test these hypotheses. There were 4 treatments (T) each with three cages were as follows: in T1 (control), was a 100% monoculture treatment of mixed sex Nile tilapia; T2, had a 1:1 combination treatment of mixed sex Nile tilapia and the African catfish; T3 had another 1:1 combination treatment of mixed sex Nile tilapia and African carp and T4 had a 5:3:2 combination of all the three species; mixed sex Nile tilapia, African catfish and African carp, respectively. Representative fish samples of 30 per species per cage were taken during stocking and biweekly thereafter and measured for weight using a standard digital weighing scale (model Kern 572), total length using a standard measuring board while water quality parameters were measured using HANNA Multiprobe meter. Length-Weight (L-W) relationship were calculated using the equation \(W = aL^b \) while condition factors using \(K = 100W/L^b \). Growth parameters were tested using One way ANOVA, \(p<0.05 \) and Tukey’s Honest Post hoc test used to separate the means. The results revealed that there were no significant differences (\(p>0.05 \)) in the growth rates, and final weight of juvenile mixed sex Nile tilapia when mono-cultured and poly-cultured. However, there were significant differences in the survival rates (\(p<0.05 \)). The final weight (g) achieved were 32.59±8.75, 36.58±7.29, 34.16±7.73 and 32.02±9.00, respectively. The mean weight gain (g) for mixed sex Nile tilapia monocultured, polycultured with African carp, polycultured with African catfish and polycultured with the two in cages were 25.07±0.62, 29.86±3.04, 25.91±4.98 and 25.05±2.23, respectively. The survival rates were 72.5±7.2%, 61.7±2.5%, 42.3±4.5% and 48.7±5.5%, respectively. All the mixed sex Nile tilapia treatments showed isometric growth, with regression slope/weight at unit length (b) values ranging between 2.73 and 3.0. The condition factors for the treatments were all above 1 but there were significant differences between them (ANOVA, \(p<0.05 \)). The water quality parameters monitored throughout the culture period had no significant variations that would adversely affect growth rate of fish. Mixed sex Nile tilapia cultured with the African carp showed a relatively higher potential for higher productivity with a relatively higher growth.
rate, isometric growth, high condition factor and relatively higher survival rates. African catfish treatments were generally characterized by high levels of predation.

TABLE OF CONTENTS

DECLARATION AND RECOMMENDATION
COPYRIGHT
DEDICATION
ACKNOWLEDGEMENTS
ABSTRACT
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS AND ACRONYMS
CHAPTER ONE
INTRODUCTION
 1.1 Background information
 1.2 Statement of the problem
 1.3 Objectives
 1.3.1 General objective
 1.3.2 Specific objectives
 1.4 Hypotheses
 1.5 Justification
CHAPTER TWO
LITERATURE REVIEW
 2.1 Classification of Nile tilapia
 2.2 Feeding habits of Nile tilapia
 2.3 Reproduction in Nile tilapia
 2.4 Challenges of monosex culture of Nile tilapia
 2.5 Length-weight relationship and condition factor
CHAPTER THREE
MATERIALS AND METHODS

3.1 Study area

3.2 Experimental design

3.3 Sampling

3.3.1 Water quality parameters

3.3.2 Growth rates of the fish

3.4 Data Analysis

CHAPTER FOUR
RESULTS

4.1 Water quality

4.2 Growth rates of mixed sex Nile tilapia, African catfish and African carp in various species combination treatments

4.2.1 Growth rates of mixed sex Nile tilapia in cage monoculture and in different species combination with African catfish and African carp

4.2.2 The growth rates of African catfish in cage poly-culture with mixed sex Nile tilapia and African carp

4.2.3 The growth rates of African carp in cage polyculture with mixed sex Nile tilapia and African catfish

4.3 Length-weight relationships and condition factors for the three species of fish

4.3.1 Length-weight relationships

CHAPTER FIVE
DISCUSSION
5.1 Water quality

5.2 Growth rates of mixed sex Nile tilapia, African catfish and African carp in various species combination

5.3 Length-weight relationships and condition factors for the three species of fish

5.3.1 Length-weight relationships

5.3.2 Condition factors of the three species of fish

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

6.2 Recommendations

REFERENCES

APPENDICES
LIST OF FIGURES

Figure 1 Distinguishing morphological characteristics of Nile tilapia .. 5
Figure 2 Photograph of African catfish (Clarias gariepinus Burchell, 1822) 12
Figure 3 Photograph of African carp (Labeo victorianus Boulenger, 1901) 14
Figure 4 Map of the location of the National Aquaculture Research, Development and Training Center (NARDTC-Sagana) .. 17
Figure 5 The Experimental set-up .. 18
Figure 6 Growth trends of mixed sex Nile tilapia in cage monoculture and polyculture with African catfish and African carp in different species combination treatments. 25
Figure 7 Length-weight relationship of (a) mixed sex Nile tilapia cultured alone and (b) polycultured with African catfish in cages .. 28
Figure 8 Length-weight relationship of mixed sex Nile tilapia polycultured with (a) African catfish and African carp and (b) with African carp in cages .. 29
Figure 9 Length-weight relationship of African catfish polycultured with (a) mixed sex Nile tilapia and (b) mixed sex Nile tilapia and African carp in cages ... 30
Figure 10 Length-weight relationship of African carp polycultured with (a) mixed sex Nile tilapia and (b) mixed sex Nile tilapia and African catfish .. 31
LIST OF TABLES

Table 1 Nutritional content and percentage ingredient inclusions in the formulated feed

Table 2 Water quality parameters monitored during the experiment

Table 3 Growth parameters for mixed sex Nile tilapia in various species combination with African carp and African catfish

Table 4 Growth parameters for African catfish in cage poly-culture with mixed sex Nile tilapia and African carp

Table 5 Growth parameters for African carp in cage polyculture with mixed sex Nile tilapia and African catfish

Table 6 Length-weight relationships and b values for mixed sex Nile tilapia, African catfish and African carp polycultured in different species combinations in cages

Table 7 Condition factors for mixed sex Nile tilapia cultured alone and with other fish species in cages

Table 8 Condition factors for African catfish reared with mixed sex Nile tilapia and mixed sex Nile tilapia and African carp in cages

Table 9 Condition factors for African carp reared with mixed sex Nile tilapia only and with mixed sexes Nile tilapia and African catfish in cages
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>DWG</td>
<td>Daily Weight Gain</td>
</tr>
<tr>
<td>ESP</td>
<td>Economic Stimulus Program</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FFEP</td>
<td>Fish Farming Enterprise Productivity Program</td>
</tr>
<tr>
<td>HIV/Aids</td>
<td>Human Immuno Deficiency Virus-Acquired Immuno Deficiency Syndrome</td>
</tr>
<tr>
<td>KMFRI</td>
<td>Kenya Marine and Fisheries Research Institute</td>
</tr>
<tr>
<td>LIFDC</td>
<td>Low Income Food Deficit Countries</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>MT</td>
<td>17 α-MethylTestosterone</td>
</tr>
<tr>
<td>MWG</td>
<td>Mean Weight Gain</td>
</tr>
<tr>
<td>NARDTC</td>
<td>National Aquaculture Research Development and Training Centre</td>
</tr>
<tr>
<td>PD/CRSP</td>
<td>Pond Dynamics Collaborative Research Support Program</td>
</tr>
<tr>
<td>PWG</td>
<td>Percentage Weight Gain</td>
</tr>
<tr>
<td>SGR</td>
<td>Specific Growth Rate</td>
</tr>
<tr>
<td>SR</td>
<td>Survival Rate</td>
</tr>
</tbody>
</table>