ASSESSMENT OF WOODFUEL UTILIZATION AND EFFICIENCY OF COOKING STOVES IN LIKIA, NJORO SUBCOUNTY, KENYA.

WANJALA FLORENCE MUKEŠIA

A Thesis submitted to the Graduate School in partial fulfilment of the requirement for the award of a Master of Science Degree in Natural Resource Management of Egerton University.

EGERTON UNIVERSITY

15 March 2017
DECLARATION AND RECOMMENDATION

I declare that this Thesis is my original work and has not been submitted to any other University for an award of a Degree.

WANJALA FLORENCE MUKESIA

NM11/1987/07

Signature………………………………

Date……………………………

Recommendation

This research Thesis has been submitted with our approval as University Supervisors.

Supervisors

Signature………………………………… Date……………………………

DR. GILBERT. O. OBWOYERE

DEPARTMENT OF NATURAL RESOURCES

EGERTON UNIVERSITY

Signature………………………………… Date……………………………

DR. GEORGE. W. ESHIAMWATA

DEPARTMENT OF NATURAL RESOURCES

EGERTON UNIVERSITY
COPYRIGHT
©2015 Wanjala Florence Mukesia
No part of this thesis may be reproduced, stored in any retrievable system or transmitted in any form or means; electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the author or Egerton University in that behalf.
ACKNOWLEDGEMENT

I would like to acknowledge the grace of the Almighty God who has given me the ability to write this thesis. I wish to appreciate all the support and guidance offered to me in the writing of this thesis and throughout this study period. First my two supervisors Dr. Gilbert Obwoyere and Dr. George Eshiamwata, from whose enormous wealth of experience I have benefitted during the execution of this work. I am also indebted to Rose Nyagwoka, William Karoki, Caroline Chepchirchir and Peterson Mureithi from the Ministry of Agriculture Njoro Sub County, who assisted with fieldwork specifically administration of the questionnaire. Eunice Mideva who played a key role in recording data during the experiments. My appreciation is also extended to other lecturers from the Faculty of Environment and Resource Development and other Faculties of Egerton University for their encouragement and advice that have enabled this thesis be completed. I also wish to acknowledge the invaluable support of my family including my husband Wanjala Nasirembe, my daughters Miranda Mbakhila and Eunice Mideva whose patience and understanding during the difficult times that I went through in pursuit of this work helped me complete the task.
DEDICATION
I wish to dedicate this thesis to the late Prof Moses Karachi whose guidance helped to advance the idea that formed the basis of this study and my father, the late Eric Andwati who always encouraged me to pursue further studies.
ABSTRACT
Over 2.6 billion people of the world’s population prepare their food and heat their homes with biomass fuel mainly woodfuel. Wood fuel is used as a major source of energy without a replacement plan and is partly the cause of deforestation. Among the interventions identified as crucial to slowing down deforestation include promoting alternative sources of energy and using efficient stoves to reduce pressure on forest resources. This study examined wood fuel utilization and efficiency of cooking stoves among the rural population of Likia location, Njoro Sub County. A survey was conducted through a questionnaire administered to respondents from the study area. An experiment using the Water Boiling Test with Split Plot in Randomized Complete Block Experimental Design was used to study the heat gain and efficiencies of the stoves. The heating stoves were the sub plot factor and the sources of energy, the main plot factor. The study variables included temperature changes with time, heat gained during cooking and the efficiencies of the stoves. The mean heat gains and mean efficiencies were treated to ANOVA at 95% confidence level. Correlation analysis was used to study the effect of time on temperature change during cooking. Ninety percent of the respondents used woodfuel for cooking, while the three stone stove was used by 71% of the respondents. There was an acute wood fuel shortage that put pressure on the adjacent Mau forest. The highest mean heat gain was 288.9kJ ± SD 0.00 with the *Olea africana*/ceramic stove while the lowest mean heat gain was 58.6kJ ± SD 0.00 with the waste paper briquettes/wood ceramic stove and the corresponding mean efficiencies were 69% ± SD 0.00 and 14%± SD 0.00 respectively. Not all cooking stoves/woodfuel combinations were able to boil one litre of water within ten minutes. There was significant correlation between the cooking time and temperature changes at 95% confidence level. The LSD, found significant differences in mean heat gained due to the woodfuel used but not due to all the stoves used. There were significant differences in the mean efficiencies of the cooking stoves due to the fuel type, the stoves and interaction between the fuel and the stoves. The study recommends the promotion of on-farm forestry for woodfuel and timber production and creating awareness about the key ecological services provided by forest ecosystems. The promotion of improved energy saving stoves, the improvement of biomass briquette burning properties, the possibility of a subsidy provision for the people to enable their acquisition of alternative sources of energy such as solar energy panels is also recommended. These results are expected to promote sustainability in the wood fuel use and contribute to the slowing down of deforestation of the adjacent Mau Forest.

TABLE OF CONTENTS
DECLARATION AND RECOMMENDATION ..2
COPYRIGHT ...3
ACKNOWLEDGEMENT ...4
DEDICATION ...5
ABSTRACT ..6
TABLE OF CONTENTS ...6
LIST OF TABLES ...10
LIST OF FIGURES ...11
LIST OF PLATES

LIST OF ABBREVIATIONS AND ACRONYMS

CHAPTER ONE

1.0 INTRODUCTION

1. Summary of the Chapter
2. Background to the Study
3. Statement of the Problem
4. Objectives
 - 1.4.1 Broad Objectives
 - 1.4.2 Specific Objectives
5. Research Questions
6. Hypotheses
7. Justification
8. Scope and Limitations
 - 1.8.1 Scope
 - 1.8.2 Limitations
9. Definitions of Study Variables

CHAPTER TWO

2.0 LITERATURE REVIEW

1. Sumary of the Chapter
2. Forest Resource Situation
3. Global Wood fuel Utilization
4. Other Forms of Biomass Energy
5. Renewable Energy in Developing Countries
6. Improved Cook Stoves Programmes
7. Cook Stoves in Kenya
8. The Performance of Cooking Stoves
9. Efficiency of Cook Stoves
10. Fuel Energy Problem in the Mau and the Importance of the Mau Complex
11. Gaps in Knowledge

CHAPTER THREE

3.0 MATERIALS AND METHODS

1. Sumary of the Chapter
2. Description of Study Area
3.2.1 Physical Location of Study Area ... 25
3.2.2 Geology, Soils, Vegetation and Climate ... 27
3.2.3 Socio Economic Profile ... 27

3.3 Research Design .. 28

3.4 Sampling Procedure ... 28
 3.4.1 Survey .. 28
 3.4.2 Experiment ... 28

3.5 Operationalization of Study Variables ... 29

3.6 Data Collection ... 31
 3.6.1 Survey .. 31
 3.6.2 Experiment ... 31

3.7 Data Analysis ... 32

CHAPTER FOUR .. 34

4.0 RESULTS AND DISCUSSION .. 34

4.1 Summary of the chapter ... 34

4.2 The Wood fuel Utilization Patterns .. 34
 4.2.1 Forms of Energy Used For Cooking ... 34
 4.2.2 Time Spent Fetching Woodfuel and Amounts Fetched In One Fetching .. 35
 4.2.3 Time One Day’s fetching Lasts and State of Fuel When Fetched 37
 4.2.4 Mode of Acquisition and Responsibility for Fetching Woodfuel 39
 4.2.5 Cost of Fetching fuel and Means of Transporting fuel to Homestead 41
 4.2.6 Types of Known Stoves and Most Preferred Stoves 44
 4.2.7 The Reasons for the Preferred Stoves ... 44
 4.2.8 Other functions of cooking Stoves .. 46
 4.2.9 Location of Stove and Number of Cooking Stoves Used 46
 4.2.10 Amount of Fuel Used to Prepare One Meal and the Size of Household .. 48

4.3 The Lighting Duration of Stoves .. 50

4.4 The Heat Gained During Water Heating .. 53

4.5 The Trends of Heating .. 60

4.6 The Efficiency of Cooking Stoves ... 67

CHAPTER FIVE .. 67

5.0 CONCLUSIONS AND RECOMMENDATIONS .. 73

5.1 Summary of the Chapter .. 73

5.2 Conclusions .. 73
LIST OF TABLES

Table 3.1: Determination of Local Boiling Point ... 30
Table 3.2: Experiment Data Collection Sheet Olea africana charcoal/ceramic stove 32
Table 3.3: Data Analysis .. 33
Table 4.1: Change in temperature during water heating .. 54
Table 4.2: Computed Heat Gains .. 55
Table 4.3: Fuel Means for Heat Gained ... 58
Table 4.4: Stove Means for Heat Gained .. 58
Table 4.5: Significance of Correlation ... 66
Table 4.6: Stove Means for Efficiency ... 69
Table 4.7: Fuel Means for Efficiency .. 69
LIST OF FIGURES

- Figure 4.1: Form of Energy used for Cooking ...35
- Figure 4.2: Time Spent Fetching wood fuel ...36
- Figure 4.3: Amount of Woodfuel Fetched ...37
- Figure 4.4: The Time Fuel lasts ...38
- Figure 4.5: State of Fuelwood when Fetched ...38
- Figure 4.6: Mode of Acquisition of Woodfuel ..39
- Figure 4.7: Responsibility for Fetching Woodfuel ...40
- Figure 4.8: Cost of fetching Fuel ...42
- Figure 4.9: Means of Transport of Woodfuel ...43
- Figure 4.10: Known stove and Most Preferred Stove ...44
- Figure 4.11: Reasons for Preferred Stoves ...45
- Figure 4.12: Other Functions of Stoves ..46
- Figure 4.13: Location of Stove ..47
- Figure 4.14: Number of Stove Types Used ...48
- Figure 4.15: Amount of Fuel Used to Prepare One Meal ...49
- Figure 4.16: Size of Household ..50
- Figure 4.17: Lighting Duration of Cooking Stoves ...51
- Figure 4.18: Mean heat gained (kJ) and Standard Deviation57
- Figure 4.19: Trend of Heating for Maize Stover Fuel ..61
- Figure 4.20: Trend of Heating for Olea Africana Charcoal ...62
- Figure 4.21: Trend of Heating for Charcoal Briquette ..63
- Figure 4.22: Trend of Heating for Waste paper Briquettes ..64
- Figure 4.23: Trend of Heating for Olea Africana firewood ..65
- Figure 4.24: Mean Efficiencies of Stoves and Standard Deviation68
LIST OF PLATES

Plate 2.1: Cooking conditions in typical rural Kenyan home...10
Plate 2.2: Drying Charcoal Dust Briquettes ..13
Plate 2.3: Charcoal briquettes in Kenya Ceramic Stove...13
Plate 2.4: Metal Stove...16
Plate 2.5: Kenya Ceramic Stove ..16
Plate 2.6: Three Stone Stove..18
Plate 2.7: Wood Ceramic Stove..19
Plate 4.1: Bicycle loads of fuelwood being transported to market centres.................................43

LIST OF ABBREVIATIONS AND ACRONYMS

ANOVA Analysis of Variance
CBO Community Based Organization
CCT Controlled Cooking Test
CFA Community Forest Association
CV Calorific value
FAO Food and Agriculture Organization
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRA</td>
<td>Forest Resources Assessment</td>
</tr>
<tr>
<td>GCV</td>
<td>Gross calorific value</td>
</tr>
<tr>
<td>GPS</td>
<td>Geographic Positioning System</td>
</tr>
<tr>
<td>GVEP</td>
<td>Global Village Energy Partnership</td>
</tr>
<tr>
<td>ICRAF</td>
<td>International Centre for Agro forestry Research</td>
</tr>
<tr>
<td>IGADD</td>
<td>Intergovernmental Authority on Drought and Development</td>
</tr>
<tr>
<td>KCS</td>
<td>Kenya Ceramic Stove</td>
</tr>
<tr>
<td>KEMA</td>
<td>Kayole Environmental Management Association</td>
</tr>
<tr>
<td>KFS</td>
<td>Kenya Forest Service</td>
</tr>
<tr>
<td>KFWG</td>
<td>Kenya Forestry Working Group</td>
</tr>
<tr>
<td>KPT</td>
<td>Kitchen Performance Test</td>
</tr>
<tr>
<td>KWDP</td>
<td>Kenya Wood fuel Development Programme</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>MDGs</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>NCV</td>
<td>Net calorific value</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>TPES</td>
<td>Total Primary Energy Supply</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environmental Programme</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>VITA</td>
<td>Volunteers in Technical Assistance</td>
</tr>
<tr>
<td>WBT</td>
<td>Water Boiling Test</td>
</tr>
</tbody>
</table>