AN ANALYSIS OF THE DETERMINANTS OF DIFFUSION OF SUSTAINABLE AGRICULTURAL INTENSIFICATION PRACTICES IN A MAIZE-LEGUME SYSTEM IN KENYA

WILCKYSTER NYATEKO OGUTU

A Thesis Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Master of Science Degree in Agribusiness Management of Egerton University

EGERTON UNIVERSITY

NOVEMBER, 2015
DECLARATION AND RECOMMENDATION

Declaration
I declare that this thesis is my original work and has not been submitted in this or any other university for the award of a degree.

Signature…………………………. Date…………………………
Wilkyster Nyateko Ogutu
KM19/3290/12

Recommendation
This thesis has been submitted with our approval as the candidates’ supervisors.

Signature…………………………. Date…………………………
Prof. Obare G. A.
Department of Agricultural Economics and Business Management, Egerton University, Kenya.

Signature…………………………. Date…………………………
Dr. Kariuki I.M.
Department of Agricultural Economics and Business Management, Egerton University, Kenya.
COPYRIGHT

©2015, Wilekyster Nyateko Ogutu

No part of this thesis may be reproduced or transmitted in any form or by any means, electronic, mechanical including photocopying, recording or any information storage and retrieval system without prior written permission of the author or Egerton University on that behalf.

DEDICATION
I dedicate this thesis to my husband Hezron Nyarindo Isaboke, my son Jasper Wren Nyarindo and my siblings for their continued support and prayers.

ACKNOWLEDGEMENTS

I wish to thank the Almighty God for the gift of life, patience, determination, courage and confidence throughout the study period.

Further, I wish to thank Egerton University for the opportunity to pursue my master degree and instilling both academic and social ethics to be the person I am today. I thank Adoption Pathways Project funded by Australian International Food Security Center for allowing me to use data from the project for my research work.

I would like to express my sincere gratitude and utmost appreciation to my supervisors Professor Gideon Obare and Dr. Isaac Kariuki for open heartedly undertaking the tedious task of working through the whole manuscript, correcting, guiding and providing valuable information towards the successful completion of this thesis. I would also like to express my sincere thanks to the Department of Agricultural Economics and Agribusiness Management of Egerton University and the Faculty of Agriculture, for providing a favorable learning environment.
Additionally, I pass my heartfelt thanks to my colleagues John Mburu and Simon Gechaha of Egerton University for their positive criticism that has contributed to this work. I would also like to thank my husband Hezron Nyarindo, my parents and the entire family for their endless financial and moral support while I pursued my studies. I am particularly indebted to my sister in law Cecilia Cherotich for always cheering me up and always standing by me in time of need. Special thanks to James Ouma of KARI - Embu for his support throughout the study period.

Finally, to all those who had input in this work from its inception to the final production of the thesis, whom are not mentioned above, thank you so much for your support.

May God Bless You All
ABSTRACT

The adoption and diffusion of sustainable agricultural intensification (SAI) practices remain a major concern in the development-policy agenda for Sub-Saharan Africa. This will solve the problem of land degradation, low agricultural productivity and poverty. Despite the benefits such as increase in yields and improved soil fertility that SAI offer, it is unclear why smallholder farmers report low adoption levels. Further, gender roles in decision making on farm productivity remain largely and empirically unexploited. To increase agricultural production in the agricultural sector, there is need to use appropriate combination of SAI practices. This study analyzed if SAIs uptake is linear or nonlinear and the impact of SAIs on income and labor demand among genders. Data from a sample of 535 households from five counties in Eastern and Western Kenya under Adoption Pathways project were analyzed using Multinomial Endogenous Switching Regression (MESR), Ordered Probit (OP) and a Stochastic Production function. The OP results showed that the number of technologies adopted is significantly influenced by labor use intensity, family income, plot tenure, land size and contact frequency with extension service providers significantly determined adoption. The MESR results indicated that women are more involved in majority of farm operations compared to men who mostly access extension service. Extension message is likely to have more effect if those involved in farm operations are reached, and the use of SAI practices as a package earns farmers more income than in isolation. The stochastic production function results showed that the level of fertilizer and improved variety use were positively correlated with yield across the cropping type. Further, access to credit positively affected the farmers’ choice of cropping systems, the elderly farmers practiced more intercropping, low soil fertility significantly reduced the growing of pure maize stand and limited incomes favored more intercropping. These results can help in packaging SAI practices for enhanced uptake by smallholder farmers especially in the presence of declining soil fertility and high commercial input costs. Furthermore, the results suggest that a better understanding of the determinants of cropping choices for smallholder farmers can be beneficial for better targeting of SAIs for adoption and subsequently improving crop productivity with less use of commercial inputs.

TABLE OF CONTENTS
AN ANALYSIS OF THE DETERMINANTS OF DIFFUSION OF SUSTAINABLE AGRICULTURAL INTENSIFICATION PRACTICES IN A MAIZE-LEGUME SYSTEM IN KENYA

DECLARATION AND RECOMMENDATION
COPYRIGHT
DEDICATION
ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS AND ACRONYMS
CHAPTER ONE
INTRODUCTION
1.1 Background information
1.2 The statement of the research problem
1.3 The study objectives
1.4 Hypotheses
1.5 Justification
1.6 Scope and limitation
1.7 Definition of terms
1.8 Outline of the thesis
CHAPTER TWO
LITERATURE REVIEW
2.1 Trends of technology uptake
2.2 Determinants of technology uptake
2.2.2 Gender of household head and food security links
2.3 Impact of improved maize legume farming systems on farmer’s welfare
2.4 Theoretical framework
2.5 Conceptual framework
CHAPTER THREE
RESEARCH METHODOLOGY
3.1 Study area
3.3 Data collection and analysis
3.4 Description of variables used in the analysis
CHAPTER FOUR
DESCRIPTIVE ANALYSIS OF ADOPTION AND DIFFUSION OF SAI MODEL
LIST OF TABLES
Table 3.1: Description of variables for the multinomial endogenous switching regression (MESR) ordered probit (OP) and Stochastic production function (SP) .. 21
Table 4.1: Models variable definition and summary statistics .. 28
Table 4.2: Means of labor contribution by gender ... 29
Table 4.3: Technology adoption by gender ... 30
Table 4.4: Crop system gross margins across technology and technology combinations 34
Table 5.1: SAI packages used by maize legume farmers on different sub plots 40
Table 5.2: Multinomial logit coefficients estimates of adoption of SAI packages 42
Table 5.3: Impact of SAI technologies combinations on labor use in man days and income 45
Table 5.4: Impact of SAI technologies combinations on labor use in man days by gender 49
Table 6.1: Coefficient estimates and Marginal effects of the ordered probit model 55
Table 7.1: Production function model coefficients of SAI technology uptake and smallholder cropping systems .. 63
LIST OF FIGURES

Figure 2.1: Conceptual framework ... 15
Figure 3.1: Map of study area ... 17
Figure 4.1: Constraints in accessing key inputs in maize production 31
Figure 4.2: Constraints in accessing key inputs in legume production 31
Figure 4.3: Correlation of maize yield per acre with SAI technologies 32
Figure 7.1: Relationship between cropping system and SAI technology uptake ... 64

LIST OF ABBREVIATIONS AND ACRONYMS

AIFSC Australian International Food Security Center
APP Adoption Pathways Project
CIMMYT International Maize and Wheat Improvement Center
DH Double Hurdle
FHHs Female Headed Households
HH Household
INRM Improved Natural Resource Management
KES Kenya shillings
MESRM Multinomial Endogenous Switching Regression Model
MHHs Male Headed Households
SAI Sustainable Agricultural Intensification Practices
SIMLESA Sustainable Intensification of maize-legume in Eastern and Southern Africa
SSA Sub Sahara Africa