EVALUATION OF AGRONETS ON MICROCLIMATE MODIFICATION, INSECT PEST CONTROL AND CABBAGE (*Brassica oleracea* var.*capitata*) CROP PERFORMANCE

By

EVERLYNE M’MBONE MULEKE

A Thesis Submitted to the Graduate School in Partial Fulfilment of the Requirements for the Award of Master of Science Degree in Horticulture of Egerton University

EGERTON UNIVERSITY

OCTOBER, 2013
DECLARATION AND RECOMMENDATION

DECLARATION
This thesis is my original work and has not been submitted in any institution for any other award.

Signature ………………………
Date…………………………...

MULEKE EVERLYNE M’MBONE

RECOMMENDATION
This thesis has been submitted with our approval as supervisors.

Signature: ……………………… Date…………………………

DR. MWANARUSI SAIDI, Ph.D.
Department of Crops, Horticulture and Soils,
Egerton University

Signature: ……………………… Date ……………………………

PROF. FRANCIS M. ITULYA, Ph.D.
Department of Crops, Horticulture and Soils,
Egerton University

Signature: ……………………… Date…………………………

PROF. MATHIEU NGOUAJIO, Ph.D.
Department of Horticulture,
Michigan State University- East Lansing
DEDICATION

This work is dedicated to my parents Dr. and Mrs Muleke, brothers; Albert Muleke, Price Muleke, the late Elphas Muleke and sister, Christine Muleke.
ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr. Mwanarusi Saidi, Prof Francis Itulya and Prof. Mathieu Ngouajio for their valued academic, untiring guidance and support throughout the course of this study.

I am grateful for the support received from the department of Crops, Horticulture and Soils of Egerton University, HortCRSP, USAID, Michigan State University and A to Z company for the technical and financial support without which this work would not have been a success. Special thanks to my research assistant, Lennox Muchiri for your hardwork, cooperation, commitment, determination and understanding. Appreciation goes to Prof. Liu and Dr. Otaye of Egerton University.

Above all, I would like to acknowledge the Almighty God’s omnipotence, omniscience, and omnipresence, which made this study successful. To HIM is the glory!

ABSTRACT

This study was done to evaluate the effects of agronets on insect pests and crop performance on cabbage production under Kenyan conditions. Two experiments were conducted over a span of two seasons at the Horticulture Research and Teaching Field, Egerton University. The objectives were to determine the effects of agronets on (1) microclimate modification, (2)
insect pest population and damage, and (3) the subsequent effect on seedling performance, crop growth, yield and quality of cabbage. A Randomized Complete Block Design with two treatments and five replications was used for the nursery transplant production experiment, while six treatments and five replications were used for the field production experiment. For the nursery experiment, the treatments comprised of; (i) open transplant production (control) and (ii) production of transplants under a 0.4mm mesh size net cover used permanently. In the field production experiment, the treatments comprised of; (i) covering crop with a net with fine mesh (0.4mm mesh size) used permanently, (ii) covering the crop with a net with large mesh (0.9mm mesh size) used permanently, (iii) covering the crop with a net with fine mesh (0.4mm mesh size) opened thrice a week (iv) covering the crop with a net with large mesh (0.9mm mesh size) opened thrice a week (v) uncovered crop sprayed with chemicals and (iv) uncovered control with no chemical sprays.

Agronet cover increased both temperature and relative humidity, enhanced seedling growth, and reduced pest damage. Seedling emergence was significantly earlier and higher under the net covering, compared to the control. Seedlings grown under the nets had higher stomatal conductance and leaf chlorophyll content. Similarly, in the field experiment, net covering generally modified the microclimate characterized by higher temperatures, relative humidity and volumetric water content compared to the control. However, the amount of photosynthetic active radiation and diurnal air temperature were reduced under net treatments. Crops covered with 0.9mm agronet generally showed faster growth, high plant dry weight and enhanced stomatal conductance and chlorophyll content.

Permanent cover with 0.4mm and 0.9mm nets resulted in significantly lower pest populations and crop damage. Cabbage yield and the number of marketable heads per hectare were highest in the 0.9mm mesh size agronet. Based on the findings of this study, the use of 0.4mm and 0.9mm net for cabbage transplant and crop production, respectively offer a potentially sustainable technology for profitable cabbage production in Kenya.
TABLE OF CONTENTS

DECLARATION AND RECOMMENDATION ... 2
COPYRIGHT .. 3
DEDICATION .. 4
ACKNOWLEDGEMENT .. 5
ABSTRACT .. 5
TABLE OF CONTENTS ... 7
LIST OF TABLES ... x
LIST OF FIGURES .. xi
LIST OF ABBREVIATIONS AND ACRONYMS .. xii
CHAPTER ONE ... 1
1.0 INTRODUCTION ... 1
 1.1 Background Information ... 1
 1.2 Statement of the Problem .. 4
 1.3 Justification of the Study .. 4
 1.4 Objectives of the Study ... 5
 1.4.1 General Objective .. 5
 1.4.2 Specific Objectives .. 5
 1.5 Research Hypotheses ... 5
CHAPTER TWO ... 7
2.0 LITERATURE REVIEW .. 7
 2.1 An Overview of Protected Vegetable Culture ... 7
 2.2 Effects of Net Coverings on Microclimate Modification ... 7
 2.3 Effects of Net Coverings on Insect Pest Populations and Crop Damage 9
 2.4 Effects of Net Covering on Growth, Yield and Quality of Crops 11
CHAPTER THREE ... 14
3.0 MATERIALS AND METHODS ... 14
 3.1 Experimental Site Description .. 14
 3.2 Planting Materials .. 14
 3.3 Cabbage Seedling Production Experiment ... 14
 3.3.1 Land Preparation, Design Layout and Seedling Establishment 14
 3.3.2 Data Collection .. 17
 3.3.2.1 Cabbage Nursery Microclimate Variables .. 17
 3.3.2.2 Cabbage Seedling Emergence Variables .. 17
 3.3.2.3 Cabbage Seedling Physiology Variables ... 17
 3.3.2.4 Cabbage Seedling Growth Variables .. 18
 3.3.2.5 Insect Pests and Disease Counts on Cabbage Seedlings 18
 3.3.3 Data Analysis .. 18
 3.4 Cabbage Field Production Experiment ... 18
 3.4.1 Land Preparation, Field Layout and Seedling Establishment 18
 3.4.2 Data Collection .. 20
 3.4.2.1 Cabbage Field Microclimate Variables .. 20
 3.4.2.2 Cabbage Plant Physiological Variables ... 20
 3.4.2.3 Cabbage Plant Growth Variables ... 22
 3.4.2.4 Insect Pests and Diseases Counts on Cabbage Plants 22
 3.4.2.5 Cabbage Yield and Yield Components ... 22

7
CHAPTER FOUR

4.0 RESULTS

4.1 Effects of Agronets on Cabbage Nursery Microclimate

4.1.1 Effects of Agronets on Cabbage Seedling Emergence and Percent Emergence

4.1.2 Effects of Agronets on Cabbage Seedling Emergence and Percent Emergence

4.1.3 Effects of Agronets on Cabbage Seedling Stomatal Conductance and Chlorophyll Content

4.1.4 Effects of Agronets on Cabbage Seedling Growth

4.1.5 Effects of Agronets on Pest Infestation and Disease Incidences

4.2 Cabbage Field Production Experiment

4.2.1 Effects of Agronets on the Crop Microclimate

4.2.1.1 Temperature

4.2.1.2 Relative Humidity

4.2.1.3 Volumetric Soil Water Content (%)

4.2.1.4 Diurnal Temperature Range

4.2.1.5 Photosynthetic Active Radiation

4.2.2 Effects of Agronets on Cabbage Stomatal Conductance

4.2.2.1 Effects of Agronets on Cabbage Stomatal Conductance

4.2.2.2 Leaf Chlorophyll Content

4.2.3 Effects of Agronets on Cabbage Plant Growth

4.2.3.1 Stem Height

4.2.3.2 Leaf Number

4.2.3.4 Effects of Agronets on Cabbage Plant Collar Diameter

4.2.4 Effects of Agronets on Cabbage Insect Pests and Disease Incidences

4.2.4.1 Cabbage Aphids

4.2.4.2 Cabbage Looper

4.2.4.3 Diamond Backmoth

4.2.4.4 Mites

4.2.4.6 Disease Incidences

4.2.5 Effects of Agronets on Cabbage Yield Components, Yield and Quality

4.2.5.1 Yield Components

4.2.5.2 Yields

4.2.5.3 Quality

4.3 Relationships between Microclimate and Other Selected Response Variables

4.3.1 Relationships between Relative Humidity and Other Selected Response Variables

4.3.2 Relationships between Air Temperature and Other Response Variables

4.3.4 Best Fit Relationships between Volumetric Water Content and Response Variables

CHAPTER FIVE

5.0 DISCUSSION

5.1 Effects of Agronets on Seedling and Crop Microclimate

5.2 Effects of Agronets on the Physiology of Cabbage

5.3 Effects of Agronets on Cabbage Plant Growth
5.4 Effects of Agronets on Insect Pests and Disease Incidences ...86
5.5 Effects of Agronets on Yield Components, Yields and Quality of Cabbage87

CHAPTER SIX ...89

6.0 CONCLUSIONS AND RECOMMENDATIONS ..89
 6.1 Conclusions .. 89
 6.2 Recommendations ... 89

REFERENCES ..91