EFFECTS OF NITROGEN, PHOSPHORUS AND WATERING REGIMES ON GROWTH, LEAF YIELD AND ESSENTIAL OILS OF SAGE
(Salvia officinalis L.)

NAOMI BOKE RIOBA

A THESIS SUBMITTED TO GRADUATE SCHOOL IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE

EGERTON UNIVERSITY

SEPTEMBER, 2015
DECLARATION AND RECOMMENDATION

Declaration
This Thesis is my original work and has not been presented for examination in any other university/institution.

Signature __________________________ Date ________________
Rioba Boke Naomi
KD14/0227/08

Recommendation
The Thesis has been submitted with our approval as the University supervisors.

Signature __________________________ Date ________________
Prof. Francis M. Itulya, Ph.D.
Department of Crops, Horticulture and Soil Science
Egerton University

Signature __________________________ Date ________________
Dr. Mwanarusi, Saidi Ph.D.
Department of Crops, Horticulture and Soil Science
Egerton University
COPYRIGHT

© 2015, Naomi Boke Rioba

No part of this work may be reproduced or utilized, in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without prior written permission from the author. All rights reserved.
DEDICATION

This work is first dedicated to the Almighty God for his goodness, mercies and favour along this journey. Secondly, I dedicate this work to my late grandmother, Roda Nyosubo Wankyo, my late mother Rebecca Otaigo Marwa and to my beloved father Lameck Rioba Wankyo. I will never forget all the effort you put into my life.
ACKNOWLEDGEMENT

I wish to sincerely thank the Almighty Father for His care, support and grace to have taken me through this long journey. I also thank Egerton University lecturers, technical staff and any other member of staff of the University for their support whenever I called on them. Thank you for your advice and guidance. To my first supervisor, Prof. F.M. Itulya, PhD, you have surely been a strong pillar in my academic endeavours since my undergraduate and masters studies, where you were my academic supervisor. You have now successfully taken me through my PhD studies. How much should I thank You? So much. Dr Mwanarusi Saidi, PhD, my second supervisor, deserves great appreciation. You have mentored me from the time I was an undergraduate student and guided me through my academic progression to this level. I wish to deeply appreciate Prof. Hornermeier of Justus Liebig University, Giessen, Germany, for hosting part of this study in his laboratory. To other members of the institute, thank you all for your assistance particularly in language translation. To my Kenyan friend living in Germany, Emilly Koske, I have no words to thank you for your hospitality, and for taking your time to show me around and making my weekends enjoyable. I am indebted to Prof. Matasyo (Egerton University), who facilitated the extraction of essential oils in his laboratory. Many thanks to Prof Nativ Dudai and Prof. Nirit of Newe Yaar research centre in Israel for hosting the essential oil analysis (GC-MS). May God bless you abundantly for the great gesture. My gratitude also goes to the University of Kabianga, German Academic Exchange Programme (DAAD) and National Commission for Science, Technology and Innovation (NACOSTI), I appreciate the financial support which enabled me to complete the enormous research objectives. I must thank the people who did the actual work in the field including assisting in data collection and tending the crop. My sincere gratitude also goes to my colleagues who encouraged me when at times I almost gave up. I also extend my appreciation to my PhD classmates who were sweating it out with me. Thank you for your encouragement and advice.

Last but most important, I wish to thank my husband Dr Babere, my sons Kerata and Joel and my daughter Rebecca for the sacrifices and prayers they have had to offer in this worthy course. Thanks to my parents and my parents in-law and the members of the extended family of both sides, my friends the church leadership and members of my church for the support you gave me. Words will never be enough to thank all of you. May God bless you in abundance.
ABSTRACT

Sage (*Salvia officinalis* L.) belongs to Lamiaceae family. It is well known as a common medicinal and aromatic plant widely used in food as well as herbal medicine products. It has wide applications in food flavouring, cosmetics and perfumery by the use of its essential oil. In Kenya, it is increasingly becoming important mostly being grown by export farms. Its leaf productivity is however often limited by nitrogen and phosphorus, which are deficient in many Kenyan soils. The problem is even exacerbated by irregular rainfall in most parts of the country where it is grown, thus necessitating irrigation. The main objective of this study was therefore to determine the effects of nitrogen (N), phosphorus (P) and watering regimes on vegetative and leaf yield and essential oil of sage. The experiment was conducted at the Horticultural Research and Teaching Farm of Egerton University, laid out in a three factor Split Block, arrangement, in a Randomised Complete Block Design (RCBD, with three replications. Treatments consisted of N supplied as urea (46% N) at four rates; 0, 40, 80 and 120kg N/ha while P was supplied as Triple Superphosphate (46% P₂O₅) at four rates; 0, 30, 60 and 90 kg P/ha. Watering regimes included W1= Watering to field capacity once after every week, W2= Watering to field capacity once after every two weeks, and W3= watering to field capacity once after every four weeks. N was assigned to the main plots; watering to the strip plots, and P to the sub-sub plots. The study was conducted in four experiments; experiment 1 (June 2011-October 2011), experiment 2 (October 2011-February 2012) experiment 3 (March 2012-May 2012) and experiment 4 (March 2014-July 2014). Data were collected on plant height, primary and secondary branches/plant, number of internodes/plant, Leaf Area Index (LAI), Specific Leaf Weight (SLW), Leaf Fresh Weight (LFW) and Leaf Dry Weights (LDW), Total Phenolic Compounds (TPC) (Experiment 3 only), essential oil yield (Experiment 3 and 4 only) and essential oil composition (Experiment 3 only). All data were subjected to Analysis of Variance (ANOVA) and where F test was significant; treatment means were separated using the Duncan Multiple Range Test (DMRT) at P ≤ 0.05.

Results that sage responded indicated to N and P application at 80 kg N/ha and 60 kg P/ha. The growth and leaf yield parameters were maximum when these treatments were combined with watering once after every two weeks. Lower and higher N and P application rates as well as too close or far apart watering intervals reduced growth and leaf fresh and dry weights. N, watering and P regimes did not significantly influence the total phenolic compounds. The mean effects of N, P and watering frequency did affect essential oil content of the crop. Furthermore, interactive effects between these variables affected the composition of the oil. Specifically, (i) the percentage-Pinene increased with β increasing N levels, (ii) β-Pinene decreased with reducing irrigation frequency, (iii) interactive effects of N and P treatments were identified for- and contents-thujones, βof-thujone and both accumulation (iv) α was also affected by the interaction of watering regime and P application. Camphor was the major ingredient under all treatments and its percentage in the oil was higher than the recommended threshold by ISO standard (ISO, 9909). Based on the results of this study, N and P application at 80 kg N/ha and 60 kg P/ha is sufficient enough to support sage growth and leaf fresh yield, under watering once after two weeks- and regime-thujones βcan whereas maximized by application of 40 kg N/ha and 60 kg P/ha and watering once a week. There is also need to develop agrotechnical practices aimed at reducing the levels of camphor in sage growing in Kenya to conform to the recommended standards (ISO, 9909). More so, there is need for economic evaluation of these practices before they can be recommended for use in Kenya.
TABLE OF CONTENTS

DECLARATION AND RECOMMENDATION .. ii
COPYRIGHT ... iii
ACKNOWLEDGEMENT ... v
ABSTRACT ... vi
TABLE OF CONTENTS ... vii
LIST OF TABLES .. x
LIST OF FIGURES .. xii
LIST OF APPENDICES ... xiv
LIST OF ABBREVIATIONS .. xvi

CHAPTER ONE .. 1
INTRODUCTION .. 1
 1.1 Statement of the Problem ... 4
 1.2 Research Justification ... 5
 1.3 Objectives of the Study .. 5
 1.3.1 General Objective .. 5
 1.3.2 Specific Objectives .. 5
 1.4 Research Hypotheses ... 5

CHAPTER TWO ... 6
2.0 LITERATURE REVIEW .. 6
 2.1 Plant Secondary Metabolites .. 6
 2.1.2 Role of Secondary Metabolites in Plants ... 7
 2.1.3 Classification of Secondary Metabolites ... 8
 2.1.4 Chemical Constituents of Sage .. 8
 2.2 Effects of Nitrogen Fertilizer on Plant Growth and Yield ... 15
 2.3 Effects of Phosphorus Fertilizer on Plant Growth and Yield .. 21
 2.4. Effects of Nitrogen Fertilizer on Essential Oils ... 22
 2.5. Effects of Phosphorus Fertilizer on Essential Oils .. 26
 2.6 Effects of Water Stress on Plant Growth and Yield .. 27
 2.7 Effects of Water Stress on Essential Oil .. 31

CHAPTER THREE .. 36
3.0 MATERIALS AND METHODS ... 36
 3.1 Experimental Site .. 36
 3.2 Treatments and Experimental Design/Layout ... 36
3.3 Crop Establishment, Management and Harvesting ...39
3.4.1 Growth Parameters ..41
3.4.2 Yield Parameters ..41
3.4.3 Analysis of Essential Oil Content and Total Phenolic Compounds (TPC)42
3.4.4 Total Phenolic Compounds (TPC) Assay ...43
3.5 Data Analysis ..44

CHAPTER FOUR ..46

4.0 RESULTS ..46
4.1.1 Effects of N, Watering and P Regimes on the Growth of Sage46
4.1.1.1 Effects of N, Watering and P Regimes on Plant height ...46
4.1.1.2 Effects of N, Watering and P Regimes on Number of Primary Branches/Plant53
4.1.1.3 Effects of N, Watering and P Regimes on the Number of Secondary Branches/ Sage Plant ...62
4.1.1.4 Effects of N, Watering and P Regimes on Number of Internodes per Sage Plant62
4.1.1.5 Effects of N, Watering and P Regimes on LAI ..69
4.1.1.6 Effects of N, Watering and P Regimes on SLW ...69
4.1.2 Effects of N, Watering and P Regimes on Yield ..69
4.1.2.1 Effects of N, Watering and P Regimes on LDW ...85
4.1.3 Effects of N, Watering and P Regimes on TPC, Essential Oil Yield and Composition. .85
4.1.3.1 Effects of N, Watering and P Regimes on TPC ..85
4.1.3.2 Effects of N, Watering and P Regimes on Essential Oil Yield85
4.1.3.3. Effects of N, Watering and P Regimes on Essential Oil Composition93
4.1.3.4. Interrelationship between Essential Oil Content (%) and Growth Parameters of Sage ...101

CHAPTER FIVE ..103

5.0 DISCUSSION ..103
5.1 Effects of N, Watering and P Regimes on the Growth of Sage ..103
5.1.1 Plant Height ...103
5.1.2 Number of Primary Branches/plant ..104
5.1.3 Number of Secondary Branches/plant ..105
5.1.4 Leaf Area Index ..105
5.2.0 Effects of N, Watering and P on Yield ...106
5.3.1 Effects of N, Watering and P on Total Phenolic Compounds ..109