ANALYSIS OF MICRONUTRIENTS AND HEAVY METALS OF INDIGENOUS REED SALTS AND SOILS FROM SELECTED AREAS IN WESTERN KENYA

WANGILA TSIKHUNGU PHANICE

A Research Thesis Submitted to the Graduate School in Partial Fulfilment of the Requirement for the Award of Doctor of Philosophy Degree in Chemistry of Egerton University

EGERTON UNIVERSITY

NOVEMBER, 2016
DECLARATION AND RECOMMENDATION

DECLARATION

This is my original work and has not been submitted in part or whole for an award in any other institution.

Phanice Tsikhungu Wangila
SD12/0142/05
Signature: .. Date: ..

RECOMMENDATION

This thesis has been submitted for examination with our approval as University supervisors.

Dr. Thomas Kinyanjui
Egerton University
Signature: ------------------------------ Date: ------------------------------

Prof. Nakhone Lenah
Egerton University
Signature: ------------------------------ Date: --------------------------------
COPY RIGHT

©2016 Wangila Phanice Tsikhungu

All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or utilized in any form or by any means whether mechanical, electronic including photocopying, recording or by any information, without prior written permission of the author or Egerton University on behalf of the author.
DEDICATION

This work is dedicated to my husband Peter, my children Brian, Teddy and Marvelynne; my parents Patrick and Joyce Fedha and Susan Nyongesa and my sisters and brothers.
ACKNOWLEDGMENTS

I give thanks to God for giving me grace to accomplish this task. Accordingly, the culmination of a journey that started with a single step and gradually developed into one mighty task is complete with the support of people so dear to me. My joy and sense of fulfillment would not be complete without making mention of everyone who offered help and support, in one way or another, during the entire period of this PhD study. The brevity of this acknowledgement does not in any way downplay the support I have received from anyone mentioned, or not mentioned, herein.

I wish to express my sincere gratitude to Egerton University for giving me a chance to do my PhD work and the support throughout my study. I also wish to thank them for the guidance and advice offered during my work.

I wish to express my sincere gratitude to my supervisors Dr. Kinyanjui and Prof. Nakhone for their encouragement, guidance and advice during the experimental work and writing up of the my thesis work. I also wish to appreciate the late Prof. Mavura for his input in this work.

I wish to thank Mr Kamau for his technical support during my working.

I wish to thank the University of Kabianga for the short study leave enabling me to put my work together. Special thanks go to the entire teaching staff of Chemistry in the University of Kabianga for their constant encouragement and moral support during my research work. My friends and family members are not to be left out because of their financial assistance and encouragement during the study period.

Thanks to my parents for their support and prayers towards the accomplishment of this work.

Finally I am particularly indebted to my husband for his encouragement, support and patience during my study period and to my children, Brian, Teddy and Marvelynne including Caren for their continued support and tireless encouragement they put in to see me finish this work.
ABSTRACT

Most communities in Western Kenya use plant indigenous salts for cooking, medicinal and numerous uses. *Typha latifolia* and *Cyperus rotundus* reeds are widely used in Busia and Lugari regions of Western Kenya to prepare indigenous salts. The suitability of these salts and validation of micronutrients and heavy metals is unknown. The objective of this study was to assess the suitability of the indigenous reed salt used in selected parts of Western Kenya. Micronutrients and heavy metal concentrations in soil habitats, *C. rotundus* and *T. latifolia* and reed salts were determined; In addition, the effect of the various methods of processing, storage conditions and the stability of iron and iodine nutrients has been investigated. Iodometric titration (Iodine), 1, 10-phenanthroline method (Iron II), flame photometric method (Na and K) and Atomic absorption spectrophotometric method (Pb, Cd, Fe, Cr) were used for analysis. Results showed that 85% of Lugari and Busia inhabitants in Western Kenya use *C. rotundus* and *T. latifolia* reed salts. Heavy metal in the soil was of the order Fe> Cr >Pb > Cd for the dry season and Cr > Fe > Cd > Pb for the wet season both in top and sub-surface soils with higher levels in the dry season. Salt iodine was of the order Kensalt >Top-chef salt > Herbal sea salt > Sea salt > *C. rotundus* salt > *T. latifolia* and Herbal sea salt >*C. rotundus* salt = *T. latifolia* salt > Sea salt > Kensalt = Top-chef salt for Fe$^{2+}$. *C. rotundus* and *T. latifolia* reed salts had higher iodine (1.1 mg/kg) than the WHO limit of 0.015 - 1.1 mg/kg, while the concentration of Fe$^{2+}$ (0.9 mg/kg and 1.0 mg/kg) was below the recommended limit of 8 - 45 mg/kg. The Na: K ratio of *T. latifolia* salt (3.2:1) was within the recommended limit of 2.5:1 - 4:1 while that of *C. rotundus* salt (0.9:1) is lower. Fe, Pb and Cd levels in both *C. rotundus* reed and *T. latifolia* reed salts exceeded the WHO/FAO permissable. Effectively all iodine and Fe$^{2+}$ present in the reed salts was lost within six months of storage under normal conditions of temperature and RH with more losses at elevated temperature and relative humidity. *T. latifolia* salt prepared using complete evaporation method and stored in LDPE container for a period not more than three months is suitable for use as table salt. *C. rotundus* prepared by complete evaporation method is ideal for use as a low-sodium salt.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION AND RECOMMENDATION</td>
<td>ii</td>
</tr>
<tr>
<td>COPY RIGHT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES/PLATES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND ACRONYMS</td>
<td>xv</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background information</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Study Area</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Statement of the Problem</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Objectives</td>
<td>10</td>
</tr>
<tr>
<td>1.4.1 General Objective</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2 Specific Objectives</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Hypotheses</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Justification</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td>13</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>13</td>
</tr>
<tr>
<td>2.1 General Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Soil Properties</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1 Soil Texture, Loss on Ignition (LOI) and Bulk Density (BD)</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2 Soil CEC, pH and Nutrient availability</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3 Soil Profiles, Soil Iodine and Plant Iodine</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Trace and Heavy metals in Soils and Plants</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1 Trace and Heavy metals in Soils</td>
<td>19</td>
</tr>
</tbody>
</table>
3.4.2 Plant Samples...60
3.4.3 Ash Samples...61
3.4.4 Salt Samples...61

3.5 Sample Analysis..62
3.5.1 Determination of pH in Soil..63
3.5.2 Determination of Soil Texture...63
3.5.3 Determination of Soil Bulk Density.......................................63
3.5.4 Determination of Soil Moisture Content...............................64
3.5.5 Determination of Loss on Ignition (LoI).................................65
3.5.6 Determination of Cation Exchange Capacity, CEC, by Direct Method.............65
3.5.7 Determination of the Concentration of Iodine in Soil, Plant and Salt samples.....65
3.5.8 Determination of Na and K Metals in Soil, Plant, Ash and Salt samples.............67
3.5.9 Determination of Iron (II) Content in Salt Samples.........................68
3.5.10 Determination of the Concentration of Pb, Cr, Cd and Fe Heavy metals in Soil, Plant, Ash and salt samples...70
3.5.11 Analysis of Pb, Cr, Cd and Fe using Atomic absorption spectrometric (AAS)....72

3.6 Calculation of the accelerated aging factor (Q_{10}) of the salt..........................73

3.7 Descriptive Cross Section Methods...74

3.8 Ethical Considerations..74
3.9 Statistical Analysis...74

CHAPTER FOUR...75
RESULTS AND DISCUSSION..75

4.1 Chemical and Physical Characteristics of Soils, Reed Plants, Ash and Reed Salt........75
4.1.1 pH of Soils, Ash and Salt..75
4.1.2 Soil Texture..77
4.1.3 Soil Bulk Density...77
4.1.4 Moisture..78
4.1.5 Loss on Ignition (LOI)..79
4.1.6 Cation Exchange Capacity (CEC)...79
4.2 Concentration of Micronutrients Iodine, Fe$^{2+}$, K and Na in Soils, Plants, ash and salt Samples…………………………………………………………………………………………………..79

4.2.1 Concentration of Micronutrients Iodine, K and Na in Soils………………………………………..79

4.2.2 Concentration of Iodine, Na and K in Plants……………………………………………………81

4.2.3 Concentration of Iodine, Na, K and Iodine in Ash……………………………………………82

4.2.4 Concentration of Micronutrients (Iodine, Na, K, Fe$^{2+}$) in Salt Samples 83…

4.3 Heavy metals Concentration in Soil, Plant, Ash and Salt Samples…………………………………….90

4.3.1 Concentration of Fe, Cr, Pb and Cd in Soil Samples………………………………………..90

4.3.2 Concentration of Fe, Pb, Cd and Cr in Plant Samples…………………………………………92

4.3.3 Concentration of Fe, Pb, Cd and Cr in Ash Samples………………………………………..96

4.3.4 Concentration of Fe, Pb, Cd and Cr in Salt Samples………………………………………..97

4.6 Effect of Method of Preparation, Packaging Materials, Storage Conditions, Storage Time and Reed Species on the Stability of Iodine and Fe$^{2+}$ in Reed Salts……………….103

4.6.1 Effect of Method of Preparation and Reed Species on Iodine and Iron in Salt Samples………………………………………………………………….103

4.6.2 Effect of Packaging Material on Iodine and Fe$^{2+}$ in Reed Salts……………………………..104

4.6.3 Effect of Storage Conditions of Temperature and Relative Humidity………………………….108

4.6.4 Effect of Storage Time on the Concentration of Iodine and Fe$^{2+}$ in the Salt………..110

4.6.5 Effect of Reed Plant Species on Iodine and Fe$^{2+}$ in Reed Salts……………………………..111

4.7 Accelerated aging Factor (Q$_{10}$) of the Salt…………………………………………………………115

CHAPTER FIVE…………………………………………………………………………………………116

CONCLUSIONS AND RECOMMENDATIONS………………………………………………………….116

5.1 Conclusion………………………………………………………………………………………..116

5.2 Recommendations……………………………………………………………………………..119

5.3 Further Work…………………………………………………………………………………….120

REFERENCES…………………………………………………………………………………………122

APPENDICES…………………………………………………………………………………………150

Appendix 1: Variable Comparisons of effect of depth, season and location on pH and Fe, Pb, Cd, Cr, Mg Concentrations……150
Appendix 2: ANOVA for the effect of Season, Location, Depth on pH, Fe, Pb, Cd, Cr and Mg concentrations in the soil samples…………………………………………………………..151

Appendix 3: ANOVA Table for the Salt Sample-Effect of Region, Location and season on the salt’s pH, moisture, Fe, Pb, Cd, Cr concentration………………………………………152

Appendix 4: Tf values for soil-plant for respective samples and sampling sites………………153

Appendix 5: Regression table for chemical characteristics of the reed Plants………………………156

Appendix 6: Regression table for Salt variables in dry seasons……………………………………158

Appendix 7: Regression table for salt-plant-soil elemental concentrations……………………..160

Appendix 8: Correlation coefficients for respective elements in plant samples…………………..161

Appendix 9: Correlation table for element concentration in salt versus its presence in plant and soil………………………………………………………………………………1

63 Appendix 10: Correlation table for various soil properties and heavy metals in the soils samples………………………………………………………………………………1

64 Appendix 11: Regression showing the dependence of iodine on species, method of salt preparation, storage period and packaging166………………

Appendix 12: Regression analysis at elevated temperature and humidity…………………………167

Appendix 13: Relationship of perception with sex, level of education, occupation, household wealth category and plant do you get local salt from by County…………………..168