dc.description.abstract |
seasonsat a disease hotspot area in Naliendele, Tanzania. Based on reactions to CBSD, several landraces including Chimaje, Mfaransa and Supa B were considered to be resistant to the disease while Kikwada, Mbuyu, and Nyoka were tolerant. ANOVA revealed that the largest sum of squares (SS) (41.9–86.7%) was attributed to the genotype
of the cassava landraces, while a smaller proportion of SS (8.1–38.2%) was due to genotype by environment ninteractions for all traits tested, which included disease symptoms, root weight, number of roots per plant and dry matter content. Environment accounted for the smallest effect (0.01–26.3%), however, the mean squares was
nonetheless significant for a few genotypes, which indicated that their disease expression was indeed influenced by the environment. Increased CBSD severity was associated with low temperatures and rainfall. Increased rainfall towards harvesting led to higher root weight but lower dry matter content in the first cropping season. Correlation analysis showed that the presence of CBSD symptoms reduces the amount of usable roots, total root weight, and root dry matter content. Many resistant/tolerant landraces also had high root weight and dry matter content, and they can be used by farmers to reduce CBSD losses. The landraces described here form novel sources of CBSD resistance that can be used for breeding disease-resistant cassava varieties with superior agronomic
characteristics |
en_US |